J Med Internet Res
July 2025
Background: Recognizing patient symptoms is fundamental to medicine, research, and public health. However, symptoms are often underreported in coded formats even though they are routinely documented in physician notes. Large language models (LLMs), noted for their generalizability, could help bridge this gap by mimicking the role of human expert chart reviewers for symptom identification.
View Article and Find Full Text PDFGenetic testing is essential for diagnosing and managing clinical conditions, particularly rare Mendelian diseases. Although efforts to identify rare phenotype-associated variants have focused on protein-truncating variants, interpreting missense variants remains challenging. Deep learning algorithms excel in various biomedical tasks, yet distinguishing pathogenic from benign missense variants remains elusive.
View Article and Find Full Text PDFLancet Digit Health
January 2025
Background: Patient notes contain substantial information but are difficult for computers to analyse due to their unstructured format. Large-language models (LLMs), such as Generative Pre-trained Transformer 4 (GPT-4), have changed our ability to process text, but we do not know how effectively they handle medical notes. We aimed to assess the ability of GPT-4 to answer predefined questions after reading medical notes in three different languages.
View Article and Find Full Text PDFIntroduction: The rapid advancement of artificial intelligence (AI) has led to significant transformations in health and healthcare. As AI technologies continue to evolve, there is an urgent need to establish a unified framework that guides the design, implementation, and evaluation of AI-driven interventions across individual and population health contexts.
Approach: In response to this need, the National Academy of Medicine (NAM) has initiated the development of an AI code of conduct (AICC) through its Digital Health Action Collaborative.
BMJ Health Care Inform
September 2024
Objectives: Following the launch of ChatGPT in November 2022, interest in large language model-powered chatbots has soared with increasing focus on the clinical potential of these tools. We sought to measure general practitioners' (GPs) current use of this new generation of chatbots to assist with any aspect of clinical practice in the UK.
Methods: An online survey was distributed to a non-probability sample of GPs registered with the clinician marketing service Doctors.
Objective: To address challenges in large-scale electronic health record (EHR) data exchange, we sought to develop, deploy, and test an open source, cloud-hosted app "listener" that accesses standardized data across the SMART/HL7 Bulk FHIR Access application programming interface (API).
Methods: We advance a model for scalable, federated, data sharing and learning. Cumulus software is designed to address key technology and policy desiderata including local utility, control, and administrative simplicity as well as privacy preservation during robust data sharing, and artificial intelligence (AI) for processing unstructured text.
Genetic testing has become an essential component in the diagnosis and management of a wide range of clinical conditions, from cancer to developmental disorders, especially in rare Mendelian diseases. Efforts to identify rare phenotype-associated variants have predominantly focused on protein-truncating variants, while the interpretation of missense variants presents a considerable challenge. Deep learning algorithms excel in various applications across biomedical tasks, yet accurately distinguishing between pathogenic and benign genetic variants remains an elusive goal.
View Article and Find Full Text PDFObjective: This study assesses the application of interpretable machine learning modeling using electronic medical record data for the prediction of conversion to neurological disease.
Methods: A retrospective dataset of Cleveland Clinic patients diagnosed with Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, or Parkinson's disease, and matched controls based on age, sex, race, and ethnicity was compiled. Individualized risk prediction models were created using eXtreme Gradient Boosting for each neurological disease at four timepoints in patient history.
Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits.
View Article and Find Full Text PDFBackground: Real-time surveillance of emerging infectious diseases necessitates a dynamically evolving, computable case definition, which frequently incorporates symptom-related criteria. For symptom detection, both population health monitoring platforms and research initiatives primarily depend on structured data extracted from electronic health records.
Objective: This study sought to validate and test an artificial intelligence (AI)-based natural language processing (NLP) pipeline for detecting COVID-19 symptoms from physician notes in pediatric patients.
J Am Med Inform Assoc
April 2024
Objective: To evaluate the real-world performance of the SMART/HL7 Bulk Fast Health Interoperability Resources (FHIR) Access Application Programming Interface (API), developed to enable push button access to electronic health record data on large populations, and required under the 21st Century Cures Act Rule.
Materials And Methods: We used an open-source Bulk FHIR Testing Suite at 5 healthcare sites from April to September 2023, including 4 hospitals using electronic health records (EHRs) certified for interoperability, and 1 Health Information Exchange (HIE) using a custom, standards-compliant API build. We measured export speeds, data sizes, and completeness across 6 types of FHIR.
Objective: To address challenges in large-scale electronic health record (EHR) data exchange, we sought to develop, deploy, and test an open source, cloud-hosted app 'listener' that accesses standardized data across the SMART/HL7 Bulk FHIR Access application programming interface (API).
Methods: We advance a model for scalable, federated, data sharing and learning. Cumulus software is designed to address key technology and policy desiderata including local utility, control, and administrative simplicity as well as privacy preservation during robust data sharing, and AI for processing unstructured text.
Objective: The 21st Century Cures Act Final Rule requires that certified electronic health records (EHRs) be able to export a patient's full set of electronic health information (EHI). This requirement becomes more powerful if EHI exports use interoperable application programming interfaces (APIs). We sought to advance the ecosystem, instantiating policy desiderata in a working reference implementation based on a consensus design.
View Article and Find Full Text PDF: To implement an open source, free, and easily deployable high throughput natural language processing module to extract concepts from clinician notes and map them to Fast Healthcare Interoperability Resources (FHIR). : Using a popular open-source NLP tool (Apache cTAKES), we create FHIR resources that use modifier extensions to represent negation and NLP sourcing, and another extension to represent provenance of extracted concepts. : The SMART Text2FHIR Pipeline is an open-source tool, released through standard package managers, and publicly available container images that implement the mappings, enabling ready conversion of clinical text to FHIR.
View Article and Find Full Text PDFJMIR Med Educ
January 2024
Patients' online record access (ORA) is growing worldwide. In some countries, including the United States and Sweden, access is advanced with patients obtaining rapid access to their full records on the web including laboratory and test results, lists of prescribed medications, vaccinations, and even the very narrative reports written by clinicians (the latter, commonly referred to as "open notes"). In the United States, patient's ORA is also available in a downloadable form for use with other apps.
View Article and Find Full Text PDFObjective: To evaluate the real-world performance in delivering patient data on populations, of the SMART/HL7 Bulk FHIR Access API, required in Electronic Health Records (EHRs) under the 21st Century Cures Act Rule.
Materials And Methods: We used an open-source Bulk FHIR Testing Suite at five healthcare sites from April to September 2023, including four hospitals using EHRs certified for interoperability, and one Health Information Exchange (HIE) using a custom, standards-compliant API build. We measured export speeds, data sizes, and completeness across six types of FHIR resources.
Though electronic health record (EHR) systems are a rich repository of clinical information with large potential, the use of EHR-based phenotyping algorithms is often hindered by inaccurate diagnostic records, the presence of many irrelevant features, and the requirement for a human-labeled training set. In this paper, we describe a knowledge-driven online multimodal automated phenotyping (KOMAP) system that i) generates a list of informative features by an online narrative and codified feature search engine (ONCE) and ii) enables the training of a multimodal phenotyping algorithm based on summary data. Powered by composite knowledge from multiple EHR sources, online article corpora, and a large language model, features selected by ONCE show high concordance with the state-of-the-art AI models (GPT4 and ChatGPT) and encourage large-scale phenotyping by providing a smaller but highly relevant feature set.
View Article and Find Full Text PDFEClinicalMedicine
October 2023
Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras.
View Article and Find Full Text PDF