Publications by authors named "Kenji Funami"

Cytoplasmic dsRNA is recognized by RNA helicase RIG-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), triggering induction of the innate immune response via the mitochondrial antiviral signaling protein (MAVS). In contrast, extracellular dsRNA is internalized into endosomes and recognized by Toll-like receptor 3 (TLR3), which triggers signaling via the Toll-like receptor adaptor molecule 1 (TICAM-1). Poly(I:C) is a synthetic dsRNA analog and increases the expression of (), , and () mRNAs during pluripotency induction.

View Article and Find Full Text PDF

RNA works as a genome and messenger in RNA viruses, and it sends messages in most of the creatures of the Earth, including viruses, bacteria, fungi, plants, and animals. The human innate immune system has evolved to detect single- and double-stranded RNA molecules from microbes by pattern recognition receptors and induce defense reactions against infections such as the production of type I interferons and inflammatory cytokines. To avoid cytokine toxicity causing chronic inflammation or autoimmunity by sensing self-RNA, the activation of RNA sensors is strictly regulated.

View Article and Find Full Text PDF

-derived diacylated lipoprotein M161Ag (MALP404) is recognized by human/mouse toll-like receptor (TLR) 2/TLR6. Short proteolytic products including macrophage-activating lipopeptide 2 (MALP2) have been utilized as antitumor immune-enhancing adjuvants. We have chemically synthesized a short form of MALP2 named MALP2s (-[2,3-bis(palmitoyloxy)propyl]-CGNNDE).

View Article and Find Full Text PDF

Background: Intestinal tumorigenesis is promoted by myeloid differentiation primary response gene 88 (MyD88) activation in response to the components of microbiota in Apc mice. Microbiota also contains double-stranded RNA (dsRNA), a ligand for TLR3, which activates the toll-like receptor adaptor molecule 1 (TICAM-1, also known as TRIF) pathway.

Methods: We established Apc Ticam1 mice and their survival was compared to survival of Apc Myd88 and wild-type (WT) mice.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide (LPS), produces pro-inflammatory cytokines and type I interferons, and associates with a trigger of endotoxin shock. TLR4 is interacted with a TIR domain-containing adaptor molecule-2 (TICAM-2)/TRAM [TRIF (TIR domain-containing adaptor-inducing interferon-β)-related adaptor molecule] via its Toll-interleukin-1 receptor homology (TIR) domain. TICAM-2 acts as a scaffold protein and activates TIR domain-containing adaptor molecule-1 (TICAM-1)/TRIF.

View Article and Find Full Text PDF

L-Ergothioneine (EGT) is a naturally-occurring amino acid which is characterized by its antioxidant property; yet, the physiological role of EGT has yet to be established. We investigated the immune-enhancing properties of EGT, and found that it acts as a potentiator of toll-like receptor (TLR) signaling. When mouse bone marrow-derived macrophages (BMDMs) were pretreated with EGT, TLR signal-mediated cytokine production was augmented in BMDMs.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes.

View Article and Find Full Text PDF

The presented data are related with our paper entitled "14-3-3-zeta participates in TLR3-mediated TICAM-1 signal-platform formation" (Funami et al., 2016) [1]. These data show the proteins which specifically bind to the activated (oligomerized) TICAM-1.

View Article and Find Full Text PDF

Background: Triggering receptors expressed on myeloid cells (Trem) proteins are a family of cell surface receptors used to control innate immune responses such as proinflammatory cytokine production in mice. Trem genes belong to a rapidly expanding family of receptors that include activating and inhibitory paired-isoforms.

Results: By comparative genomic analysis, we found that Trem4, Trem5 and Trem-like transcript-6 (Treml6) genes typically paired receptors.

View Article and Find Full Text PDF

Recognition of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) is important in innate immune signaling. Toll-like receptors (TLRs) are well-characterized PRRs and are pivotal in antiviral and antitumor host defense. TIR domain-containing adaptor molecule 1 (TICAM-1, also called TRIF) is an adapter molecule in TLR3- and TLR4-mediated IRF3 activation, late-phase NF-κB activation and MAPK-mediated AP-1 activation.

View Article and Find Full Text PDF

The clathrin-dependent endocytic pathway is crucial for endosomal TLR3- and TLR4-mediated Toll-IL-1R domain-containing adaptor molecule-1 (TICAM-1) signaling. TLR4 uses a different signaling platform, plasma membrane and endosomes, for activation of TIRAP-MyD88 and TICAM-2-TICAM-1, respectively. LPS-induced endocytosis of TLR4 is mandatory for TICAM-1-mediated signaling including IFN-β production.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infects hepatocytes but not dendritic cells (DCs), but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs) in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection.

View Article and Find Full Text PDF

Compartmentalization of nucleic acid (NA)-sensing TLR3, 7, 8, and 9 is strictly regulated to direct optimal response against microbial infection and evade recognition of host-derived NAs. Uncoordinated 93 homolog B1 (UNC93B1) is indispensable for trafficking of NA-sensing TLRs from the endoplasmic reticulum (ER) to endosomes/lysosomes. UNC93B1 controls loading of the TLRs into COPII vesicles to exit from the ER and traffics with the TLRs in the steady state.

View Article and Find Full Text PDF

TLR4 triggers LPS signaling through the adaptors Toll/IL-1R domain-containing adaptor molecule (TICAM)-2 (also called TRAM) and TICAM-1 (also called TRIF), together with Toll/IL-1R domain-containing adaptor protein (TIRAP) and MyD88. The MyD88 pathway mediates early phase responses to LPS on the plasma membrane, whereas the TICAM pathway mediates late-phase responses, which induce the production of type I IFN and activation of inflammasomes. TICAM-2 bridges TLR4 and TICAM-1 for LPS signaling in the endosome.

View Article and Find Full Text PDF

Nucleic acid-sensing TLRs are involved in both antimicrobial immune responses and autoimmune inflammation. TLR8 is phylogenetically and structurally related to TLR7 and TLR9, which undergo proteolytic processing in the endolysosomes to generate functional receptors. Recent structural analyses of human TLR8 ectodomain and its liganded form demonstrated that TLR8 is also cleaved, and both the N- and C-terminal halves contribute to ligand binding.

View Article and Find Full Text PDF

The innate immune system plays key roles in antimicrobial responses by developing the pattern-recognition receptors that recognize microbial components. The endosomal Toll-like receptors (TLRs) and cytosolic RIG-I-like receptors (RLRs) both recognize viral nucleic acids and are essential for antiviral immunity. Recent evidence suggests that compartmentalization of the receptors, and also their adaptor molecule, is important for discrimination between self and nonself and for distinct innate immune signals.

View Article and Find Full Text PDF

Homotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains.

View Article and Find Full Text PDF

Inflammatory cytokines and chemokines play important roles in inflammation during viral infection. Hepatitis C virus (HCV) is a hepatotropic RNA virus that is closely associated with chronic liver inflammation, fibrosis, and hepatocellular carcinoma. During the progression of HCV-related diseases, hepatic stellate cells (HSCs) contribute to the inflammatory response triggered by HCV infection.

View Article and Find Full Text PDF

The innate immune system senses microbial infections using pattern-recognition receptors and signals to activate adaptive immunity. Type I transmembrane protein Toll-like receptors (TLRs) play important roles in antimicrobial immune responses. Upon the recognition of pathogen-associated molecular patterns, TLRs homo- or heterodimerize and recruit distinct adaptor molecules to the intracellular TIR domains.

View Article and Find Full Text PDF

Acute hepatitis C virus (HCV) infection evokes several distinct innate immune responses in host, but the virus usually propagates by circumventing these responses. Although a replication intermediate double-stranded RNA is produced in infected cells, type I interferon (IFN) induction and immediate cell death are largely blocked in infected cells. In vitro studies suggested that type I and III IFNs are mainly produced in HCV-infected hepatocytes if the MAVS pathway is functional, and dysfunction of this pathway may lead to cellular permissiveness to HCV replication and production.

View Article and Find Full Text PDF

TLR3 belongs to the family of intracellular TLRs that recognize nucleic acids. Endolysosomal localization and cleavage of intracellular TLRs play pivotal roles in signaling and represent fail-safe mechanisms to prevent self-nucleic acid recognition. Indeed, cleavage by cathepsins is required for native TLR3 to signal in response to dsRNA.

View Article and Find Full Text PDF

Many chronic hepatitis patients with hepatitis C virus (HCV) are observed to have a degree of steatosis which is a factor in the progression of liver diseases. Transgenic mice expressing HCV core protein develop liver steatosis before the onset of hepatocellular carcinoma, suggesting active involvement of HCV in the de-regulation of lipid metabolism in host cells. However, the role of lipid metabolism in HCV life cycle has not been fully understood until the establishment of in vitro HCV infection and replication system.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) 3, 7, 8, and 9 are localized to intracellular compartments where they encounter foreign or self nucleic acids and activate innate and adaptive immune responses. The endoplasmic reticulum (ER)-resident membrane protein, UNC93B1, is essential for intracellular trafficking and endolysosomal targeting of TLR7 and TLR9. TLR8 is phylogenetically and structurally related to TLR7 and TLR9, but little is known about its localization or function.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood.

View Article and Find Full Text PDF