Publications by authors named "Ken B Newman"

The resolution at which animal populations can be modeled can be increased when multiple datasets corresponding to different life stages are available, allowing, for example, seasonal instead of annual descriptions of dynamics. However, the abundance estimates used for model fitting can have multiple sources of error, both random and systematic, namely bias. We focus here on the consequences of, and how to address, differing and unknown observation biases when fitting models.

View Article and Find Full Text PDF

State-space models (SSMs) are a popular tool for modeling animal abundances. Inference difficulties for simple linear SSMs are well known, particularly in relation to simultaneous estimation of process and observation variances. Several remedies to overcome estimation problems have been studied for relatively simple SSMs, but whether these challenges and proposed remedies apply for nonlinear stage-structured SSMs, an important class of ecological models, is less well understood.

View Article and Find Full Text PDF

Designing and implementing natural resource monitoring is a challenging endeavor undertaken by many agencies, NGOs, and citizen groups worldwide. Yet many monitoring programs fail to deliver useful information for a variety of administrative (staffing, documentation, and funding) or technical (sampling design and data analysis) reasons. Programs risk failure if they lack a clear motivating problem or question, explicit objectives linked to this problem or question, and a comprehensive conceptual model of the system under study.

View Article and Find Full Text PDF

Studying rare and sensitive species is a challenge in conservation biology. The problem is exemplified by the case of the imperiled delta smelt Hypomesus transpacificus, a small delicate fish species endemic to the San Francisco Estuary, California. Persistent record-low levels of abundance and relatively high sensitivity to handling stress pose considerable challenges to studying delta smelt in the wild.

View Article and Find Full Text PDF

We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species.

View Article and Find Full Text PDF

Four species of pelagic fish of particular management concern in the upper San Francisco Estuary, California, USA, have declined precipitously since ca. 2002: delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). The estuary has been monitored since the late 1960s with extensive collection of data on the fishes, their pelagic prey, phytoplankton biomass, invasive species, and physical factors.

View Article and Find Full Text PDF

We compare two Monte Carlo (MC) procedures, sequential importance sampling (SIS) and Markov chain Monte Carlo (MCMC), for making Bayesian inferences about the unknown states and parameters of state-space models for animal populations. The procedures were applied to both simulated and real pup count data for the British grey seal metapopulation, as well as to simulated data for a Chinook salmon population. The MCMC implementation was based on tailor-made proposal distributions combined with analytical integration of some of the states and parameters.

View Article and Find Full Text PDF