Publications by authors named "Keith McDougall"

Phytophthora cinnamomi is an oomycete found in the soil and capable of invading the roots of a wide range of host plants globally, potentially killing them and affecting the ecosystems they inhabit. This pathogen is often inadvertently dispersed in natural vegetation on the footwear of humans. A range of equipment is often provided or recommended to be carried for cleaning footwear in places where P.

View Article and Find Full Text PDF

High-elevation ecosystems are among the few ecosystems worldwide that are not yet heavily invaded by non-native plants. This is expected to change as species expand their range limits upwards to fill their climatic niches and respond to ongoing anthropogenic disturbances. Yet, whether and how quickly these changes are happening has only been assessed in a few isolated cases.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is causing plant species in mountains worldwide to shift their elevational ranges, complicating efforts to monitor these changes due to varying sampling methods.
  • The Mountain Invasion Research Network (MIREN) developed a standardized protocol to assess native and non-native plant distributions along elevation gradients over time, using surveys conducted every five years at specific sites.
  • Initial results show unique elevational patterns for native plant richness and a global decline in non-native species, highlighting disturbed areas like road edges as hotspots for plant invasions, emphasizing the need for more global studies to guide conservation efforts.
View Article and Find Full Text PDF

Conservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which have already undergone recent changes in climate and experienced more frequent large-scale bushfires.

View Article and Find Full Text PDF

Plant deaths had been observed in the sub-alpine and alpine areas of Australia. Although no detailed aetiology was established, patches of dying vegetation and progressive thinning of canopy suggested the involvement of root pathogens. Baiting of roots and associated rhizosphere soil from surveys conducted in mountainous regions New South Wales and Tasmania resulted in the isolation of eight Phytophthora species; Phytophthora cactorum, Phytophthora cryptogea, Phytophthora fallax, Phytophthora gonapodyides, Phytophthora gregata, Phytophthora pseudocryptogea, and two new species, Phytophthora cacuminis sp.

View Article and Find Full Text PDF

Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g.

View Article and Find Full Text PDF

Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a climex model for the global distribution of P.

View Article and Find Full Text PDF

Mountain ecosystems have been less adversely affected by invasions of non-native plants than most other ecosystems, partially because most invasive plants in the lowlands are limited by climate and cannot grow under harsher high-elevation conditions. However, with ongoing climate change, invasive species may rapidly move upwards and threaten mid-, and then high-elevation mountain ecosystems. We evaluated this threat by modeling the current and future habitat suitability for 48 invasive plant species in Switzerland and New South Wales, Australia.

View Article and Find Full Text PDF

Background And Aims: The association of clonality, polyploidy and reduced fecundity has been identified as an extinction risk for clonal plants. Compromised sexual reproduction limits both their ability to adapt to new conditions and their capacity to disperse to more favourable environments. Grevillea renwickiana is a prostrate, putatively sterile shrub reliant on asexual reproduction.

View Article and Find Full Text PDF