Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source.
View Article and Find Full Text PDFBST2/tetherin is a transmembrane protein with antiviral activity; it is synthesized following exposure to interferons, and restricts the release of budding virus particles by tethering them to the host cell membrane. We previously showed that BST2 is induced in primary neurons following measles virus (MV) infection or type I interferon; however, BST2 was dispensable for protection against challenge with neuron-restricted MV. Here, we define the contribution of BST-2 in neuronal MV infection.
View Article and Find Full Text PDFRecent advances in our understanding of tumour heterogeneity alongside studies investigating altered metabolism within transformed tissue have identified metabolic pathways critical to cancer cell survival. Leveraging this information presents a promising new avenue for the generation of cancer-specific therapeutics and improved patient outcomes.
View Article and Find Full Text PDFAcetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source.
View Article and Find Full Text PDFConsumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease. Fructose intake triggers de novo lipogenesis in the liver, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates.
View Article and Find Full Text PDFBackground: Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood.
Methods: We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC.
Genomic material from many neurotropic RNA viruses (e.g., measles virus [MV], West Nile virus [WNV], Sindbis virus [SV], rabies virus [RV], and influenza A virus [IAV]) remains detectable in the mouse brain parenchyma long after resolution of the acute infection.
View Article and Find Full Text PDFCentral nervous system consequences of viral infections are rare, but when they do occur, they are often serious and clinically challenging to manage. Our awareness of the perils of neuroinvasion by viruses is growing: the recently appreciated impact of Ebola and Zika virus infections on CNS integrity, decreases in vaccination coverage for potentially neurotropic viruses such as measles, and increased neurovirulence of some influenza strains collectively highlight the need for a better understanding of the viral-neural interaction. Defining these interactions and how they result in neuropathogenesis is paramount for the development of better clinical strategies, especially given the limited treatment options that are available due to the unique physiology of the brain that limits migration of blood-borne molecules into the CNS parenchyma.
View Article and Find Full Text PDFNat Rev Neurosci
December 2016
It is becoming clear that the manner by which the immune response resolves or contains infection by a pathogen varies according to the tissue that is affected. Unlike many peripheral cell types, CNS neurons are generally non-renewable. Thus, the cytolytic and inflammatory strategies that are effective in controlling infections in the periphery could be damaging if deployed in the CNS.
View Article and Find Full Text PDFUnlabelled: In permissive mouse central nervous system (CNS) neurons, measles virus (MV) spreads in the absence of hallmark viral budding or neuronal death, with transmission occurring efficiently and exclusively via the synapse. MV infection also initiates a robust type I interferon (IFN) response, resulting in the synthesis of a large number of genes, including bone marrow stromal antigen 2 (Bst2)/tetherin/CD317. Bst2 restricts the release of some enveloped viruses, but to date, its role in viral infection of neurons has not been assessed.
View Article and Find Full Text PDF