Publications by authors named "Karthik Uppulury"

Respiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modelling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well-differentiated human bronchial epithelial cultures and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titre kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titre kinetic features including a faster timescale of viral titre clearance than viral production, and a monotonic decrease in the peak RSV titre with decreasing inoculum dose.

View Article and Find Full Text PDF

Proton cancer therapy (PCT) utilizes high-energy proton projectiles to obliterate cancerous tumors with low damage to healthy tissues and without the side effects of X-ray therapy. The healing action of the protons results from their damage on cancerous cell DNA. Despite established clinical use, the chemical mechanisms of PCT reactions at the molecular level remain elusive.

View Article and Find Full Text PDF

The structural properties and thermal stability of dipalmitoylphosphatidylethanolamine (DPPE) in the ordered gel phase have been studied by molecular dynamics simulation using two force fields: the Berger united-atom model and the CHARMM C36 atomistic model. As is widely known, structural features are sensitive to the initial preparation of the gel phase structure, as some degrees of freedom are slow to equilibrate on the simulation time scale of hundreds of nanoseconds. In particular, we find that the degree of alignment of the lipids' glycerol backbones, which join the two hydrocarbon tails of each molecule, strongly affects the tilt angle of the tails in the resulting structures.

View Article and Find Full Text PDF

Intracellular transport is a fundamental biological process during which cellular materials are driven by enzymatic molecules called motor proteins. Recent optical trapping experiments and theoretical analysis have uncovered many features of cargo transport by multiple kinesin motor protein molecules under applied loads. These studies suggest that kinesins cooperate negatively under typical transport conditions, although some productive cooperation could be achieved under higher applied loads.

View Article and Find Full Text PDF

Intracellular transport is supported by enzymes called motor proteins that are often coupled to the same cargo and function collectively. Recent experiments and theoretical advances have been able to explain certain behaviors of multiple motor systems by elucidating how unequal load sharing between coupled motors changes how they bind, step, and detach. However, nonmechanical interactions are typically overlooked despite several studies suggesting that microtubule-bound kinesins interact locally via short-range nonmechanical potentials.

View Article and Find Full Text PDF

Subcellular cargos are often transported by teams of processive molecular motors, which raises questions regarding the role of motor cooperation in intracellular transport. Although our ability to characterize the transport behaviors of multiple-motor systems has improved substantially, many aspects of multiple-motor dynamics are poorly understood. This work describes a transition rate model that predicts the load-dependent transport behaviors of multiple-motor complexes from detailed measurements of a single motor's elastic and mechanochemical properties.

View Article and Find Full Text PDF