This study investigates the influence of sputtering plasma-induced damage on stochastic characteristics in HfZrO₂ (HZO)-based ferroelectric tunnel junctions (FTJs), with an emphasis on memory and neuromorphic device optimization. Variation of the sputtering plasma power during top electrode deposition introduces distinct levels of trap within the HZO layer. Low-frequency noise (LFN) spectroscopy and temperature-dependent electrical measurements confirm that higher plasma power generates additional shallow-level traps, thereby promoting Poole-Frenkel conduction while simultaneously increasing current noise magnitude.
View Article and Find Full Text PDFEnhancing sensor sensitivity and gas identification capabilities is essential for the broad application of gas sensors. Developing efficient transducing methods for sensors can be applied to a wide range of sensors. However, developing such methods for resistive sensors remains challenging.
View Article and Find Full Text PDFOxygen vacancies and adsorbed oxygen species on metal oxide surfaces play important roles in various fields. However, existing methods for manipulating surface oxygen require severe settings and are ineffective for repetitive manipulation. We present a method to manipulate the amount of surface oxygen by modifying the oxygen adsorption energy by electrically controlling the electron concentration of the metal oxide.
View Article and Find Full Text PDF