Environ Toxicol Chem
September 2025
This study investigated the effects of two emerging PFAS compounds, perfluorododecane sulfonic acid (PFDoDS) and perfluoro-4-ethylcyclohexane sulfonic acid (PFECHS), alongside legacy perfluorooctanesulfonic acid (PFOS), on gene expression in the liver, heart, and bursa of Fabricius from mallard ducklings (Anas platyrhynchos) exposed in ovo, simulating maternal transfer to the egg. These PFAS compounds were selected based on their detection in a declining sea duck species and concerns over their endocrine disruption potential. Farmed mallard eggs were injected with 80 ng/g of PFDoDS, PFECHS, or PFOS, reflecting concentrations at the upper end of those reported in wild bird eggs.
View Article and Find Full Text PDFTo better cope with changing water temperatures, most aquatic ectotherms undergo physiological acclimation which often alters their thermal tolerance. The timeframe and relative contribution of various underlying mechanisms remain unclear, but are crucial to understand for predictions of climate change impacts. We investigated three candidate mechanisms involved in thermal acclimation in fish: heat shock protein expression (specifically HSP70), mitochondrial density (citrate synthase [CS] expression), and membrane fluidity (via spectroscopic fluorescence polarization).
View Article and Find Full Text PDFProc Biol Sci
December 2024
Integr Comp Biol
December 2024
Birds exhibit a variety of migration strategies. Because sustained flapping flight requires the production of elevated levels of energy compared to typical daily activities, migratory birds are well-documented to have several physiological adaptations to support the energy demands of migration. However, even though mitochondria are the source of ATP that powers flight, the respiratory performance of the mitochondria is almost unstudied in the context of migration.
View Article and Find Full Text PDFThiamine deficiency can result in life-threatening physiological and neurological complications. While a thiamine-deficient diet may result in the onset of such symptoms, the presence of thiaminase - an enzyme that breaks down thiamine - is very often the cause. In such instances, thiaminase counteracts the bioavailability and uptake of thiamine, even when food-thiamine levels are adequate.
View Article and Find Full Text PDFReproduction and environmental stressors are generally thought to be associated with a cost to the individual experiencing them, but the physiological mechanisms mediating costs of reproduction and maternal effects remain poorly understood. Studies examining the effects of environmental stressors on a female's physiological state and body condition during reproduction, as well as the physiological condition of offspring, have yielded equivocal results. Mitochondrial physiology and oxidative stress have been implicated as important mediators of life-history trade-offs.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
October 2022
Naked mole-rats (NMR) and Damaraland mole-rats (DMR) exhibit extraordinary longevity for their body size, high tolerance to hypoxia and oxidative stress and high reproductive output; these collectively defy the concept that life-history traits should be negatively correlated. However, when life-history traits share similar underlying physiological mechanisms, these may be positively associated with each other. We propose that one such potential common mechanism might be the bioenergetic properties of mole-rats.
View Article and Find Full Text PDFAbstractThe scarcity of asexual reproduction in vertebrates alludes to an inherent cost. Several groups of asexual vertebrates exhibit lower endurance capacity (a trait predominantly sourced by mitochondrial respiration) compared with congeneric sexual species. Here we measure endurance capacity in five species of lizards and examine mitochondrial respiration between sexual and asexual species using mitochondrial respirometry.
View Article and Find Full Text PDFAnimals (Basel)
September 2021
Lactation is physiologically demanding, requiring increased nutrient and energy use. Mammary and extramammary tissues undergo metabolic changes for lactation. Although it has long been recognized that mitochondria play a critical role in lactation, the mitochondrial adaptations for milk synthesis in supporting tissues, such as liver and skeletal muscle are relatively understudied.
View Article and Find Full Text PDFMitochondrial energetics is a central theme in animal biochemistry and physiology, with researchers using mitochondrial respiration as a metric to investigate metabolic capability. To obtain the measures of mitochondrial respiration, fresh biological samples must be used, and the entire laboratory procedure must be completed within approximately 2 h. Furthermore, multiple pieces of specialized equipment are required to perform these laboratory assays.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2021
Erythrocyte enucleation is thought to have evolved in mammals to support their energetic cost of high metabolic activities. However, birds face similar selection pressure yet possess nucleated erythrocytes. Current hypotheses on the mammalian erythrocyte enucleation claim that the absence of cell organelles allows erythrocytes to ) pack more hemoglobin into the cells to increase oxygen carrying capacity and ) decrease erythrocyte size for increased surface area-to-volume ratio, and improved ability to traverse small capillaries.
View Article and Find Full Text PDFFree-living animals often engage in behaviour that involves high rates of workload and results in high daily energy expenditure (DEE), such as reproduction. However, the evidence for elevated DEE accompanying reproduction remains equivocal. In fact, many studies have found no difference in DEE between reproducing and non-reproducing females.
View Article and Find Full Text PDFForaging at elevated rates to provision offspring is thought to be an energetically costly activity and it has been suggested that there are physiological costs associated with the high workload involved. However, for the most part, evidence for costs of increased foraging and/or reproductive effort is weak. Furthermore, despite some experimental evidence demonstrating negative effects of increased foraging and parental effort, the physiological mechanisms underlying costs associated with high workload remain poorly understood.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
April 2021
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPR ). ER stress response and the UPR maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover.
View Article and Find Full Text PDFAn animal's pace of life is mediated by the physiological demands and stressors it experiences (e.g. reproduction) and one likely mechanism that underlies these effects is oxidative stress.
View Article and Find Full Text PDFAerobic capacity is assumed to be a main predictor of workload ability and haematocrit (Hct) and haemoglobin (Hb) have been suggested as key determinants of aerobic performance. Intraspecific studies have reported increases in Hct and Hb in response to increased workload. Furthermore, Hct and Hb vary markedly among individuals and throughout the annual cycle in free-living birds and it has been suggested that this variation reflects adaptive modulation of these traits to meet seasonal changes in energy demands.
View Article and Find Full Text PDFDespite widely held assumptions that hematocrit (Hct) is a key determinant of aerobic capacity and exercise performance, this relationship has not often been tested rigorously in birds and results to date are mixed. Migration in birds involves high-intensity exercise for long durations at various altitudes. Therefore, it provides a good model system to examine the effect of Hct on flight performance and physiological responses of exercise at high altitude.
View Article and Find Full Text PDFSkeletal muscle remodeling is an important component of phenotypic flexibility in birds and impacts organismal metabolism and performance, which could potentially influence fitness. One regulator of skeletal muscle remodeling is myostatin, an autocrine/paracrine muscle growth inhibitor that may be down-regulated under conditions promoting heavier muscle masses. In this study, we employed protocols requiring hovering while foraging to increase foraging costs and modify phenotypes of zebra finches (Taeniopygia guttata).
View Article and Find Full Text PDFForaging to obtain food, either for self-maintenance or at presumably elevated rates to provide for offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches () using the technique described by Koetsier and Verhulst (2011) Birds in the 'high foraging effort' (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically expensive foraging mode observed in many free-living small passerines.
View Article and Find Full Text PDFMany behaviors crucial for survival and reproductive success in free-living animals, including migration, foraging, and escaping from predators, involve elevated levels of physical activity. However, although there has been considerable interest in the physiological and biomechanical mechanisms that underpin individual variation in exercise performance, to date, much work on the physiology of exercise has been conducted in laboratory settings that are often quite removed from the animal's ecology. Here we review current, laboratory-based model systems for exercise (wind or swim tunnels for migration studies in birds and fishes, manipulation of exercise associated with non-migratory activity in birds, locomotion in lizards, and wheel running in rodents) to identify common physiological markers of individual variation in exercise capacity and/or costs of increased activity.
View Article and Find Full Text PDFGen Comp Endocrinol
April 2017
The zebra finch is a common model organism in neuroscience, endocrinology, and ethology. Zebra finches are generally considered opportunistic breeders, but the extent of their opportunism depends on the predictability of their habitat. This plasticity in the timing of breeding raises the question of how domestication, a process that increases environmental predictability, has affected their reproductive physiology.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
January 2016
Here, we studied the life-long monogamous zebra finch, to examine the relationship between circulating sex steroid profiles and pair-maintenance behavior in pairs of wild-caught zebra finches (paired in the laboratory for >1 month). We used liquid chromatography-tandem mass spectrometry to examine a total of eight androgens and progestins [pregnenolone, progesterone, dehydroepiandrosterone (DHEA), androstenediol, pregnan-3,17-diol-20-one, androsterone, androstanediol, and testosterone]. In the plasma, only pregnenolone, progesterone, DHEA, and testosterone were above the limit of quantification.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2014
Zebra finches are highly social songbirds that maintain life-long monogamous pair-bonds. They rely heavily upon these pair-bonds to survive their ever-changing and unpredictable habitat in the Australian desert. These pair-bonds are maintained via a large repertoire of affiliative behaviors that for most of an individual's life are predominately associated with pair maintenance.
View Article and Find Full Text PDF