Publications by authors named "Kana Yanagihara"

Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs.

View Article and Find Full Text PDF

Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable.

View Article and Find Full Text PDF

Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However, the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research.

View Article and Find Full Text PDF

Given the difficulties inherent in maintaining human pluripotent stem cells (hPSCs) in a healthy state, hPSCs should be routinely characterized using several established standard criteria during expansion for research or therapeutic purposes. hPSC colony morphology is typically considered an important criterion, but it is not evaluated quantitatively. Thus, we designed an unbiased method to evaluate hPSC colony morphology.

View Article and Find Full Text PDF

Mitochondrial oxidative phosphorylation is a major source of cellular ATP. Its usage as an energy source varies, not only according to the extracellular environment, but also during development and differentiation, as indicated by the reported changes in the flux ratio of glycolysis to oxidative phosphorylation during embryonic stem (ES) cell differentiation. The fluorescent probe JC-1 allows visualization of changes in the mitochondrial membrane potential produced by oxidative phosphorylation.

View Article and Find Full Text PDF

Neural differentiation is an important target of human embryonic stem cells, which provide a source for cell-based therapy, developmental biology, and pharmaceutical research. Previous studies revealed that inhibition of the bone morphogenetic protein is required for neural induction from human embryonic stem cells. On the contrary, the functions of fibroblast growth factors and Activin/Nodal signaling are controversial.

View Article and Find Full Text PDF
Article Synopsis
  • Enzymes traditionally used for passaging human pluripotent stem cells can harm the cells by digesting surface proteins, and alternative methods that lack divalent cations may cause cell death.
  • The study finds that magnesium (Mg²⁺) and calcium (Ca²⁺) ions can effectively manage cell adhesion and detachment in hPSCs without using enzymes, allowing for healthier cell handling.
  • This new enzyme-free method preserves more cell integrity and facilitates the collection of undifferentiated cells in larger clumps, making the culture process safer and easier.
View Article and Find Full Text PDF

Background: The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells.

View Article and Find Full Text PDF

To create new in vitro culture models for extrapolating the cell response in vivo, we attempted to devise culture substrata of anchorage-dependent cells. The first substratum, tissue/organ sections for histopathology(TOSHI)-substratum was found to conserve both tissue composition and microarchitecture in an in vivo environment. Collagen vitrigel membrane, the second substratum investigated, possesses excellent strength and protein permeability.

View Article and Find Full Text PDF

Adenoviral vectors are extensively used as gene-delivery vehicles in gene therapy. They are usually produced by HEK-293 cell (human embryonic kidney-293 cell) culture, which requires specially formulated serum-free medium, the cost of which is considerable or by supplementation with FBS (fetal bovine serum). The risk of infectious diseases such as BSE (bovine spongiform encephalopathy) and endogenous retrovirus derived from cattle is a serious concern.

View Article and Find Full Text PDF

We previously reported that sericin small (sericin-S), with a molecular weight that ranges from 5 to 100 kDa, is a cell culture supplement used to accelerate cell proliferation. In this study, a novel preparation method for sericin and several applications of sericin were examined. Sericin large, prepared under nonhydrolyzing conditions and ranging from 50 to 200 kDa, also accelerated cell proliferation, but its effects were inferior to those of sericin-S.

View Article and Find Full Text PDF