The recent popularity of foundation models and the pre-train-and-adapt paradigm, where a large-scale model is transferred to downstream tasks, is gaining attention for volumetric medical image segmentation. However, current transfer learning strategies devoted to full fine-tuning for transfer learning may require significant resources and yield sub-optimal results when the labeled data of the target task is scarce. This makes its applicability in real clinical settings challenging since these institutions are usually constrained on data and computational resources to develop proprietary solutions.
View Article and Find Full Text PDFDigital pathology is now a standard component of the pathology workflow, offering numerous benefits such as high-detail whole slide images and the capability for immediate case sharing between hospitals. Recent advances in deep learning-based methods for image analysis make them a potential aid in digital pathology. However, A significant challenge in developing computer-aided diagnostic systems for pathology is the lack of intuitive, open-source web applications for data annotation.
View Article and Find Full Text PDFFoundation vision-language models are currently transforming computer vision, and are on the rise in medical imaging fueled by their very promising generalization capabilities. However, the initial attempts to transfer this new paradigm to medical imaging have shown less impressive performances than those observed in other domains, due to the significant domain shift and the complex, expert domain knowledge inherent to medical-imaging tasks. Motivated by the need for domain-expert foundation models, we present FLAIR, a pre-trained vision-language model for universal retinal fundus image understanding.
View Article and Find Full Text PDFComput Med Imaging Graph
March 2024
Background And Objective: Mitotic activity is a crucial biomarker for diagnosing and predicting outcomes for different types of cancers, particularly breast cancer. However, manual mitosis counting is challenging and time-consuming for pathologists, with moderate reproducibility due to biopsy slide size, low mitotic cell density, and pattern heterogeneity. In recent years, deep learning methods based on convolutional neural networks (CNNs) have been proposed to address these limitations.
View Article and Find Full Text PDFComput Med Imaging Graph
July 2023
Deep learning-based models applied to digital pathology require large, curated datasets with high-quality (HQ) annotations to perform correctly. In many cases, recruiting expert pathologists to annotate large databases is not feasible, and it is necessary to collect additional labeled data with varying label qualities, e.g.
View Article and Find Full Text PDFCurrent unsupervised anomaly localization approaches rely on generative models to learn the distribution of normal images, which is later used to identify potential anomalous regions derived from errors on the reconstructed images. To address the limitations of residual-based anomaly localization, very recent literature has focused on attention maps, by integrating supervision on them in the form of homogenization constraints. In this work, we propose a novel formulation that addresses the problem in a more principled manner, leveraging well-known knowledge in constrained optimization.
View Article and Find Full Text PDFComput Biol Med
August 2022
Multiple instance learning (MIL) deals with data grouped into bags of instances, of which only the global information is known. In recent years, this weakly supervised learning paradigm has become very popular in histological image analysis because it alleviates the burden of labeling all cancerous regions of large Whole Slide Images (WSIs) in detail. However, these methods require large datasets to perform properly, and many approaches only focus on simple binary classification.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
August 2021
Prostate cancer is one of the main diseases affecting men worldwide. The gold standard for diagnosis and prognosis is the Gleason grading system. In this process, pathologists manually analyze prostate histology slides under microscope, in a high time-consuming and subjective task.
View Article and Find Full Text PDFBackground And Objective: Prostate cancer is one of the main diseases affecting men worldwide. The Gleason scoring system is the primary diagnostic tool for prostate cancer. This is obtained via the visual analysis of cancerous patterns in prostate biopsies performed by expert pathologists, and the aggregation of the main Gleason grades in a combined score.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2020
Background And Objective: Prostate cancer is one of the most common diseases affecting men worldwide. The Gleason scoring system is the primary diagnostic and prognostic tool for prostate cancer. Furthermore, recent reports indicate that the presence of patterns of the Gleason scale such as the cribriform pattern may also correlate with a worse prognosis compared to other patterns belonging to the Gleason grade 4.
View Article and Find Full Text PDF