Publications by authors named "Julia B Carleton"

The human genome encodes an order of magnitude more gene expression enhancers than promoters, suggesting that most genes are regulated by the combined action of multiple enhancers. We have previously shown that neighboring estrogen-responsive enhancers exhibit complex synergistic contributions to the production of an estrogenic transcriptional response. Here we sought to determine the molecular underpinnings of this enhancer cooperativity.

View Article and Find Full Text PDF

An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.

View Article and Find Full Text PDF

Multiple regulatory regions bound by the same transcription factor have been shown to simultaneously control a single gene's expression. However, it remains unclear how these regulatory regions combine to regulate transcription. Here, we test the sufficiency of promoter-distal estrogen receptor α-binding sites (ERBSs) for activating gene expression by recruiting synthetic activators in the absence of estrogens.

View Article and Find Full Text PDF

Multiple enhancers often regulate a given gene, yet for most genes, it remains unclear which enhancers are necessary for gene expression, and how these enhancers combine to produce a transcriptional response. As millions of enhancers have been identified, high-throughput tools are needed to determine enhancer function on a genome-wide scale. Current methods for studying enhancer function include making genetic deletions using nuclease-proficient Cas9, but it is difficult to study the combinatorial effects of multiple enhancers using this technique, as multiple successive clonal cell lines must be generated.

View Article and Find Full Text PDF

Multiple regulatory regions have the potential to regulate a single gene, yet how these elements combine to affect gene expression remains unclear. To uncover the combinatorial relationships between enhancers, we developed Enhancer-interference (Enhancer-i), a CRISPR interference-based approach that uses 2 different repressive domains, KRAB and SID, to prevent enhancer activation simultaneously at multiple regulatory regions. We applied Enhancer-i to promoter-distal estrogen receptor α binding sites (ERBS), which cluster around estradiol-responsive genes and therefore may collaborate to regulate gene expression.

View Article and Find Full Text PDF

Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous.

View Article and Find Full Text PDF

In situ hybridization (ISH) is a sensitive technique for documenting the tissue distribution of mRNAs. Advanced nonradioactive ISH methods that are based on the use of digoxigenin (DIG)-labeled probes and chromogenic detection have better spatial resolution than emulsion autoradiography techniques and, when paired with high-resolution digital imaging, allow for large-scale profiling of gene expression at cellular resolution within a histological context. However, technical challenges restrict the number of genes that can be investigated in a small laboratory setting.

View Article and Find Full Text PDF

Background: A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, a learned vocal behavior with important similarities to human speech acquisition.

View Article and Find Full Text PDF

For over 30 years, the African cichlid fish, Astatotilapia burtoni, has been an important model system for studying the mechanisms underlying socially mediated behavioral change, with the focus being the dominance behavior of males. A recently collected wild-stock (WS) of this species invigorates interest in parallel studies of females' behavior. Here, we describe a robust 'good-mother' phenotype, increased maternal affiliation in fry, and subtle differences in males' behavior that are exhibited by this new stock.

View Article and Find Full Text PDF