Purpose: To explore how the natural heterogeneity of human coagulation factor VIII (FVIII) and the processing of its B-domain specifically modulate protein aggregation.
Methods: Recombinant FVIII (rFVIII) molecular species containing 70% or 20% B-domain, and B-domain-deleted rFVIII (BDD-rFVIII), were separated from full-length recombinant FVIII (FL-rFVIII). Purified human plasma-derived FVIII (pdFVIII) was used as a comparator.
Microbiology (Reading)
August 2014
Bacterial cell wall hydrolases are essential for peptidoglycan remodelling in regard to bacterial cell growth and division. In this study, peptidoglycan hydrolases (PGHs) of different Lactobacillus buchneri strains were investigated. First, the genome sequence of L.
View Article and Find Full Text PDFBased on the previous demonstration of surface (S-) layer protein glycosylation in Lactobacillus buchneri 41021/251 and because of general advantages of lactic acid bacteria for applied research, protein glycosylation in this bacterial species was investigated in detail. The cell surface of L. buchneri CD034 is completely covered with an oblique 2D crystalline array (lattice parameters, a = 5.
View Article and Find Full Text PDFSurface (S)-layer proteins are model systems for studying protein glycosylation in bacteria and simultaneously hold promises for the design of novel, glyco-functionalized modules for nanobiotechnology due to their 2D self-assembly capability. Understanding the mechanism governing S-layer glycan biosynthesis in the Gram-positive bacterium CCM 2051 is necessary for the tailored glyco-functionalization of its S-layer. Here, the putative oligosaccharyl:S-layer protein transferase WsfB from the S-layer glycosylation gene locus is characterized.
View Article and Find Full Text PDF