Publications by authors named "Ju-Yu Tseng"

The elusive nature of brain tumor progression, hidden behind the blood-brain barrier, presents significant challenges for treatment monitoring in high-grade gliomas. In this feasibility study, we evaluate a novel approach to tracking glioblastoma through liquid biopsy, assessing whether tumor cells leave detectable molecular footprints in both blood and cerebrospinal fluid (CSF). Using the MiSelect R II System with specialized microfluidic technology, we analyzed paired blood and CSF samples from six glioblastoma patients, revealing a striking presence of circulating tumor cells (CTCs)- with higher abundance in CSF, where detection rates reached 100% compared to 83.

View Article and Find Full Text PDF

Rapid mutations within SARS-CoV-2 are driving immune escape, highlighting the need for in-depth and routine analysis of memory B cells (MBCs) to complement the important but limited information from neutralizing antibody (nAb) studies. In this study, we collected plasma samples and peripheral blood mononuclear cells (PBMCs) from 35 subjects and studied the nAb titers and the number of antigen-specific memory B cells at designated time points before and after vaccination. We developed an assay to use the MiSelect R II System with a single-use microfluidic chip to directly detect the number of spike-receptor-binding domain (RBD)-specific MBCs in PBMCs.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) in blood are accepted as a prognostic marker for patients with metastatic colorectal cancer (CRC). However, there is limited data on the use of CTCs as a prognostic marker for non-metastatic patients. In the current study, we used a rare cell automated analysis platform, the MiSelect R System, to enumerate CTCs from blood in non-metastatic CRC patients, and corelated the number of CTCs with the clinical staging and survival.

View Article and Find Full Text PDF

Background: Circulating tumor cells (CTCs) have been investigated as a potential biomarker for predicting prognosis and monitoring therapeutic responses in colorectal cancer (CRC). However, the sensitivity of CTCs detection is low, thus limiting the clinical utility of CTCs. We aim to examine the clinicopathological parameters that improve prognosis prediction for CRC using CTCs as a biomarker.

View Article and Find Full Text PDF

Our previous studies showed that colorectal tumor has high interleukin-4 receptor α (IL-4Rα) expression, whereas adjacent normal tissue has low or no IL-4Rα expression. We also observed that human atherosclerotic plaque-specific peptide-1 (AP1) can specifically target to IL-4Rα. In this study, we investigated the therapeutic efficacy and systemic toxicity of AP1-conjuagted liposomal doxorubicin.

View Article and Find Full Text PDF

Purpose: Colorectal polyps are generally believed to be the precursors of colorectal cancers (CRC); however, the proportion and speed of progression differed widely in different subsets of polyps. Using microarray-based comparative genomic hybridization (aCGH) platform and CD133 immunostaining, we characterized colon polyps according to their association with CRC that developed in the same individual.

Patients And Methods: aCGH was performed to unveil genomic changes in 18 cancer-synchronous polyps (CSP), and 9 cancer-preceding polyps (CPP), together with their corresponding cancers and 16 cases of incidental polyps (IP), were examined for comparison.

View Article and Find Full Text PDF

Background: Tumor initiating cells are a small subset of cancer cells responsible for tumor growth and recurrence. The status of tumor initiating cells was measured using the surface markers CD133 (prominin-1) and ESA (epithelial-specific antigen). The aims of this study were to investigate the significance of CD133(+)/ESA(+) cells in mesenteric venous blood (MVB) and tumor mass (TM) for overall survival (OS) and disease-free survival (DFS) in colorectal cancer (CRC) patients undergoing curative resection.

View Article and Find Full Text PDF

Breast cancer resistance protein [BCRP/ATP-binding cassette subfamily G member 2 (ABCG2)] is a member of the ATP-binding cassette transporter family. The presence of ABCG2 on the plasma membrane in many kinds of human cancer cells contributes to multidrug resistance during chemotherapy, and it has been used as the side population marker for identifying cancer stem cells in lung cancers. We report here that, in addition to the membranous form, ABCG2 proteins are also found inside the nucleus, where they bind to the E-box of CDH1 (E-cadherin) promoter and regulate transcription of this gene.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) can be detected in the blood of different types of early or advanced cancer using immunology-based assays or nucleic acid methods. The detection and quantification of CTCs has significant clinical utility in the prognosis of metastatic breast, prostate, and colorectal cancers. CTCs are a heterogeneous population of cells and often different from those of their respective primary tumor.

View Article and Find Full Text PDF

Purpose: Metastasis is the major cause of death in patients with colorectal cancer (CRC). Circulating tumor cells (CTC) are believed to cause metastasis and serve as a prognostic marker for mortality in clinical stage IV patients. However, most studies are conducted in late-stage cases when distant metastases have already occurred; thus, such results provide limited clinical use.

View Article and Find Full Text PDF