Mammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood.
View Article and Find Full Text PDFImmunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder characterized by DNA hypomethylation and antibody deficiency. It is caused by mutations in DNMT3B, ZBTB24, CDCA7, or HELLS. While progress has been made in elucidating the roles of these genes in regulating DNA methylation, little is known about the pathogenesis of the life-threatening hypogammaglobulinemia phenotype.
View Article and Find Full Text PDFUracil DNA glycosylase (UNG) removes mutagenic uracil base from DNA to initiate base excision repair (BER). The result is an abasic site (AP site) that is further processed by the high-fidelity BER pathway to complete repair and maintain genome integrity. The gammaherpesviruses (GHVs), human Kaposi sarcoma herpesvirus (KSHV), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68) encode functional UNGs that have a role in viral genome replication.
View Article and Find Full Text PDFAntibodies are powerful tools to detect expressed proteins. However off-target recognition can confound their use. Therefore, careful characterization is needed to validate specificity in distinct applications.
View Article and Find Full Text PDFUnlabelled: Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder characterized by DNA hypomethylation and antibody deficiency. It is caused by mutations in or . While progress has been made in elucidating the roles of these genes in regulating DNA methylation, little is known about the pathogenesis of the life-threatening hypogammaglobulinemia phenotype.
View Article and Find Full Text PDFOverexpression of the MYC oncoprotein is an initiating step in the formation of several cancers. MYC frequently recruits chromatin-modifying complexes to DNA to amplify the expression of cancer-promoting genes, including those regulating cell cycle, proliferation, and metabolism, yet the roles of specific modifiers in different cancer types are not well defined. Here, we show that GCN5 is an essential coactivator of cell-cycle gene expression driven by MYC overexpression and that deletion of delays or abrogates tumorigenesis in the mouse model of B-cell lymphoma.
View Article and Find Full Text PDFLife Sci Alliance
March 2020
The gammaherpesviruses (γHVs), human Kaposi sarcoma-associated herpesvirus (KSHV), EBV, and murine γHV68 are prevalent infections associated with lymphocyte pathologies. After primary infection, EBV and γHV68 undergo latent expansion in germinal center (GC) B cells and persists in memory cells. The GC reaction evolves and selects antigen-specific B cells for memory development but whether γHV passively transients or manipulates this process in vivo is unknown.
View Article and Find Full Text PDF(WW domain containing oxidoreductase) expression loss is common in various cancers and characteristic of poor prognosis. Deletions, translocations, and loss of expression affecting the gene are a common feature of various B cell neoplasms such as certain B cell lymphomas and multiple myeloma. However, the role of this common abnormality in B cell tumor initiation and/or progression has not been defined.
View Article and Find Full Text PDFmBio
October 2018
Misincorporation of uracil or spontaneous cytidine deamination is a common mutagenic insult to DNA. Herpesviruses encode a viral uracil-DNA glycosylase (vUNG) and a viral dUTPase (vDUT), each with enzymatic and nonenzymatic functions. However, the coordinated roles of these enzymatic activities in gammaherpesvirus pathogenesis and viral genomic stability have not been defined.
View Article and Find Full Text PDFPurpose: The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma.
Experimental Design: Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis.
Clin Cancer Res
January 2015
A simple and accurate test to detect early-stage breast cancer has not been developed. Previous studies indicate that the level of human endogenous retrovirus type K (group HERV-K(HML-2)) transcription may be increased in human breast tumors. We hypothesized that HERV-K(HML-2) reactivation can serve as a biomarker for early detection of breast cancer.
View Article and Find Full Text PDFWe previously observed that the HERV type K (HERV-K) envelope (env) protein was expressed in the majority of human breast tumors from a U.S. cohort of women from Texas.
View Article and Find Full Text PDFBackground: The envelope (env) protein of the human endogenous retrovirus type K (HERV-K) family is commonly expressed on the surface of breast cancer cells. We assessed whether HERV-K env is a potential target for antibody-based immunotherapy of breast cancer.
Methods: We examined the expression of HERV-K env protein in various malignant (MDA-MB-231, MCF-7, SKBR3, MDA-MB-453, T47D, and ZR-75-1) and nonmalignant (MCF-10A and MCF-10AT) human breast cell lines by immunoblot, enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry.
Recent evidence indicates that human cancer cells reactivate the expression of latent human endogenous retroviral (HERV) proteins. However, the extent to which cancer patients mount de novo immune responses against expressed HERV elements is unclear. In this study, we determined the extent of HERV-K env expression in human breast cancer (BC) and whether both humoral and cell-mediated immunity against HERV-K can be found in BC patients.
View Article and Find Full Text PDFInt J Cancer
November 2007
Previous studies suggest that underlying ovarian stromal cues may regulate the ovarian surface epithelium. However, little is known about the interaction between ovarian stromal cells (OSC) and ovarian surface epithelial cells (OSE) under normal physiologic and pathologic conditions, largely because of the lack of a suitable model. In the current study, the OSC obtained from a sheep were immortalized with SV-40 T/t antigen (designated IOSC) and telomerase reverse transcriptase (designated IOSCH), followed by transfection with the oncogenic allele of the human H-Ras oncogene (designated IOSChR).
View Article and Find Full Text PDF