Publications by authors named "Joseph D Bailey"

Random walks (RW) provide a useful modelling framework for the movement of animals at an individual level. If the RW is uncorrelated and unbiased such that the direction of movement is completely random, the dispersal is characterised by the statistical properties of the probability distribution of step lengths, or the dispersal kernel. Whether an individual exhibits short- or long-distance dispersal can be distinguished by the rate of asymptotic decay in the end-tail of the distribution of step-lengths.

View Article and Find Full Text PDF

Animal navigation is a key behavioural process, from localized foraging to global migration. Within groups, individuals may improve their navigational accuracy by following those with more experience or knowledge, by pooling information from many directional estimates ('many wrongs') or some combination of these strategies. Previous agent-based simulations have highlighted that homogeneous leaderless groups can improve their collective navigation accuracy when individuals preferentially copy the movement directions of their neighbours while giving a low weighting to their own navigational knowledge.

View Article and Find Full Text PDF

Many animal personality traits have implicit movement-based definitions and can directly or indirectly influence ecological and evolutionary processes. It has therefore been proposed that animal movement studies could benefit from acknowledging and studying consistent interindividual differences (personality), and, conversely, animal personality studies could adopt a more quantitative representation of movement patterns.Using high-resolution tracking data of three-spined stickleback fish () we examined the repeatability of four movement parameters commonly used in the analysis of discrete time series movement data (time stationary, step length, turning angle, burst frequency) and four behavioral parameters commonly used in animal personality studies (distance travelled, space use, time in free water, and time near objects).

View Article and Find Full Text PDF

Dispersal is a key ecological process affecting community dynamics and the maintenance of populations. There is increasing awareness of the need to understand individual dispersal potential to better inform population-level dispersal, allowing more accurate models of the spread of invasive and beneficial insects, aiding crop and pest management strategies. Here, fine-scale movements of Poecilus cupreus, an important agricultural carabid predator, were recorded using a locomotion compensator and key movement characteristics were quantified.

View Article and Find Full Text PDF

Understanding how an individual animal is able to navigate through its environment is a key question in movement ecology that can give insight into observed movement patterns and the mechanisms behind them. Efficiency of navigation is important for behavioral processes at a range of different spatio-temporal scales, including foraging and migration. Random walk models provide a standard framework for modeling individual animal movement and navigation.

View Article and Find Full Text PDF