Work from home (WFH) surged worldwide during the COVID-19 pandemic, then partially receded as the pandemic subsided. Using our Global Survey of Working Arrangements covering dozens of countries, we find that average WFH rates among college-educated employees stabilized after 2022. The average number of WFH days per week is steady at roughly 1 d per week globally from 2023 through early 2025.
View Article and Find Full Text PDFWe consider several economic uncertainty indicators for the US and UK before and during the COVID-19 pandemic: implied stock market volatility, newspaper-based policy uncertainty, Twitter chatter about economic uncertainty, subjective uncertainty about business growth, forecaster disagreement about future GDP growth, and a model-based measure of macro uncertainty. Four results emerge. First, all indicators show huge uncertainty jumps in reaction to the pandemic and its economic fallout.
View Article and Find Full Text PDFEpigenetic regulatory states can persist through mitosis and meiosis, but the connection between chromatin structure and DNA replication remains unclear. Arabidopsis INCURVATA2 (ICU2) encodes the catalytic subunit of DNA polymerase α, and null alleles of ICU2 have an embryo-lethal phenotype. Analysis of icu2-1, a hypomorphic allele of ICU2, demonstrated that ICU2 functions in chromatin-mediated cellular memory; icu2-1 strongly impairs ICU2 function in the maintenance of repressive epigenetic marks but does not seem to affect ICU2 polymerase activity.
View Article and Find Full Text PDFFront Plant Sci
June 2013
Thioredoxin (Trx) reduces disulfide bonds and play numerous important functions in plants. In cereal seeds, cytosolic h-type Trx facilitates the release of energy reserves during the germination process and is recycled by NADPH-dependent Trx reductase. This review presents a summary of the research conducted during the last 10 years to elucidate the structure and function of the barley seed Trx system at the molecular level combined with proteomic approaches to identify target proteins.
View Article and Find Full Text PDFWe isolated Arabidopsis thaliana mutants with incurved vegetative leaves. Positional cloning of incurvata8 (icu8), icu9 and icu15 has identified them as new loss-of-function alleles of the HYPONASTIC LEAVES1 (HYL1), ARGONAUTE1 (AGO1) and HUA ENHANCER1 (HEN1) genes, respectively, which encode known components of the microRNA pathway. The morphological and histological characterization of these mutants and of dicer-like1-9 indicates that small RNAs participate in the proximal-distal and adaxial-abaxial patterning of leaves, as well as in stomatal number establishment.
View Article and Find Full Text PDFSeveral plant hormones, including auxin, brassinosteroids and gibberellins, are required for skotomorphogenesis, which is the etiolated growth that seedlings undergo in the absence of light. To examine the growth of abscisic acid (ABA)-deficient mutants in the dark, we analysed several aba1 loss-of-function alleles, which are deficient in zeaxanthin epoxidase. The aba1 mutants displayed a partially de-etiolated phenotype, including reduced hypocotyl growth, cotyledon expansion and the development of true leaves, during late skotomorphogenic growth.
View Article and Find Full Text PDFCell type-specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase alpha of Arabidopsis thaliana.
View Article and Find Full Text PDFThe responsiveness of plants to osmotic stress is critically mediated by the increase in abscisic acid (ABA) levels. Osmotic stress induces the biosynthesis of ABA, whose increased levels subsequently exert a positive feedback on its own biosynthetic pathway. As only qualitative or semi-quantitative analyses were performed to test the inducibility of ABA biosynthetic genes in Arabidopsis thaliana, we used quantitative reverse transcriptase-polymerase chain reaction to re-examine the induction of the ABA1, ABA2, ABA3, NCED3 and AAO3 genes by NaCl and ABA.
View Article and Find Full Text PDFMuch of the literature on the phytohormone abscisic acid (ABA) describes it as a mediator in triggering plant responses to environmental stimuli, as well as a growth inhibitor. ABA-deficient mutants, however, display a stunted phenotype even under well-watered conditions and high relative humidity, which suggests that growth promotion may also be one of the roles of endogenous ABA. Zeaxanthin epoxidase, the product of the ABA1 gene of Arabidopsis thaliana, catalyses the epoxidation of zeaxanthin to antheraxanthin and violaxanthin, generating the epoxycarotenoid precursor of the ABA biosynthetic pathway.
View Article and Find Full Text PDF