Introduction: Disruption of intestinal barrier is a key component to various diseases. Whether barrier dysfunction is the cause or effect in these situations is still unknown, although it is believed that translocation of luminal content may initiate gastrointestinal or systemic inflammatory disorders. Since trauma- or infection-driven epithelial permeability depends on Toll-like receptor (TLR) activity, inhibition of TLR signaling has been proposed as a strategy to protect intestinal barrier integrity after infection or other pathological conditions.
View Article and Find Full Text PDFGut microbiota interventions, including probiotic and prebiotic use can alter behavior in adult animals and healthy volunteers. However, little is known about their effects in younger individuals. To investigate this, male Sprague-Dawley rats (post-natal day 21, PND21) received Lactobacillus casei 54-2-33 (10cfu/ml), inulin as prebiotic (16mg/ml), or both together (synbiotic) via drinking water for 14days.
View Article and Find Full Text PDFTherap Adv Gastroenterol
May 2016
The gut and the brain communicate bidirectionally through anatomic and humoral pathways, establishing what is known as the gut-brain axis. Therefore, interventions affecting one system will impact on the other, giving the opportunity to investigate and develop future therapeutic strategies that target both systems. Alterations in the gut-brain axis may arise as a consequence of changes in microbiota composition (dysbiosis), modifications in intestinal barrier function, impairment of enteric nervous system, unbalanced local immune response and exaggerated responses to stress, to mention a few.
View Article and Find Full Text PDF