Publications by authors named "Jordan D Tyburski"

Mutations in the gene encoding TDP-43 protein are linked to loss of function in neurons and familial frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We recently identified reduced nuclear TDP-43 in capillary endothelial cells (ECs) of donors with ALS-FTD. Because blood-brain barrier (BBB) permeability increases in ALS-FTD, we postulated that reduced nuclear TDP-43 in ECs might contribute.

View Article and Find Full Text PDF

Endothelial cells (ECs) help maintain the blood-brain barrier but deteriorate in many neurodegenerative disorders. Here we show, using a specialized method to isolate EC and microglial nuclei from postmortem human cortex (92 donors, 50 male and 42 female, aged 20-98 years), that intranuclear cellular indexing of transcriptomes and epitopes enables simultaneous profiling of nuclear proteins and RNA transcripts at a single-nucleus resolution. We identify a disease-associated subset of capillary ECs in Alzheimer's disease, amyotrophic lateral sclerosis and frontotemporal degeneration.

View Article and Find Full Text PDF

Loss of nuclear TDP-43 occurs in a wide range of neurodegenerative diseases, and specific mutations in the gene that encodes the protein are linked to familial Frontal Temporal Lobar Dementia (FTD), and Amyotrophic Lateral Sclerosis (ALS). Although the focus has been on neuronal cell dysfunction caused by TDP-43 variants, mRNA transcripts are expressed at similar levels in brain endothelial cells (ECs). Since increased permeability across the blood brain barrier (BBB) precedes cognitive decline, we postulated that altered functions of TDP-43 in ECs contributes to BBB dysfunction in neurodegenerative disease.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the challenges of studying endothelial cells (ECs) in the context of aging and neurodegenerative diseases, particularly due to difficulties in extracting their nuclei for analysis.
  • Researchers employed a novel technique called inCITE-seq to analyze nuclear proteins and RNA in ECs from human brain tissues, revealing a unique transcriptional signature linked to neurodegenerative diseases like ALS, FTD, and Alzheimer's.
  • The results indicate a loss of nuclear TDP-43 in disease-associated ECs, which affects the transcriptional regulation of inflammatory responses and could contribute to the deterioration of the blood-brain barrier in these neurodegenerative conditions.
View Article and Find Full Text PDF

NF-κB-mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through adhesion molecules Icam1 and Vcam1. The endothelium is primed for cytokine activation of NF-κB by exposure to low and disturbed blood flow (LDF)but the molecular underpinnings are not fully understood. In an experimental in vivo model of LDF, platelets were required for the increased expression of several RNA-binding splice factors, including polypyrimidine tract binding protein (Ptbp1).

View Article and Find Full Text PDF