Publications by authors named "Jordan D Poley"

Sea lice () infestation continues to pose a persistent and escalating challenge to the global salmon aquaculture industry. Given the complexity of host-parasite interactions, family-based transcriptomic studies provide crucial insights into genetic variation in host responses to sea lice, potentially guiding the development of selective breeding programs to manage parasite resistance in Atlantic salmon. This study investigated global gene expression (transcriptomic) responses of the skin and head kidney of Atlantic salmon () from different families following infestation at two distinct stages of sea lice, chalimus II and adult, under varying temperature conditions (10°C and 20°C).

View Article and Find Full Text PDF

Hydrogen peroxide (H O ) is used to treat sea lice infections of farmed salmonids in the Atlantic and Pacific Oceans and issues with resistance to this treatment, and others are a major threat to the sustainability of the industry. The objectives of this study were to determine how H O exposure affects survival and antioxidant-related gene expression in salmon lice (Lepeophtheirus salmonis) collected from the Bay of Fundy, New Brunswick. The maximum recommended dose of H O is 1,800 mg/L, while the EC values (with 95% CI) for the population tested were 1,486 (457, 2,515) mg/L for males and 2,126 (984, 3,268) mg/L for females.

View Article and Find Full Text PDF

Drug resistance in the salmon louse Lepeophtheirus salmonis is a global issue for Atlantic salmon aquaculture. Multiple resistance has been described across most available compound classes with the exception of the benzoylureas. To target this gap in effective management of L.

View Article and Find Full Text PDF

Background: Microsporidia are highly specialized, parasitic fungi that infect a wide range of eukaryotic hosts from all major taxa. Infections cause a variety of damaging effects on host physiology from increased stress to death. The microsporidian Facilispora margolisi infects the Pacific salmon louse (Lepeophtheirus salmonis oncorhynchi), an economically and ecologically important ectoparasitic copepod that can impact wild and cultured salmonids.

View Article and Find Full Text PDF

Cypermethrin has been administered for decades to control salmon lice (Lepeophtheirus salmonis) infestations in Atlantic salmon farming regions globally. However, resistance to cypermethrin and other available therapeutants has threatened the sustainability of this growing industry. To better understand the effects of cypermethrin on L.

View Article and Find Full Text PDF

Background: Salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae), are highly important ectoparasites of farmed and wild salmonids, and cause multi-million dollar losses to the salmon aquaculture industry annually. Salmon lice display extensive sexual dimorphism in ontogeny, morphology, physiology, behavior, and more. Therefore, the identification of transcripts with differential expression between males and females (sex-biased transcripts) may help elucidate the relationship between sexual selection and sexually dimorphic characteristics.

View Article and Find Full Text PDF

Salmon lice Lepeophtheirus salmonis are an ecologically and economically important parasite of wild and farmed salmon. In Scotland, Norway, and Eastern Canada, L. salmonis have developed resistance to emamectin benzoate (EMB), one of the few parasiticides available for salmon lice.

View Article and Find Full Text PDF