Publications by authors named "Jonathan D Olson"

Hyperspectral imaging and spectral analysis quantifies fluorophore concentration during fluorescence-guided surgery. However, acquisition of the multiple wavelengths required to implement these methods can be time-consuming and hinder surgical workflow. To this end, a snapshot hyperspectral imaging system capable of acquiring 64 channels of spectral data simultaneously was developed for rapid hyperspectral imaging during neurosurgery.

View Article and Find Full Text PDF

Background: Tumors that take up and metabolize 5-aminolevulinic acid emit bright pink fluorescence when illuminated with blue light, aiding surgeons in identifying the margin of resection. The adoption of this method is hindered by the blue light illumination, which is too dim to safely operate under and therefore necessitates switching back and forth from white-light mode. The aim of this study was to examine the addition of an optimized secondary illuminant adapter to improve usability of blue-light mode without degrading tumor contrast.

View Article and Find Full Text PDF

Background: Three patients enrolled in a clinical trial of 5-aminolevulinic-acid (5-ALA)-induced fluorescence-guidance, which has been demonstrated to facilitate intracranial tumor resection, were found on neuropathological examination to have focal cortical dysplasia (FCD).

Objective: To evaluate in this case series visible fluorescence and quantitative levels of protoporphyrin IX (PpIX) during surgery and correlate these findings with preoperative magnetic resonance imaging (MRI) and histopathology.

Methods: Patients were administered 5-ALA (20 mg/kg) approximately 3 h prior to surgery and underwent image-guided, microsurgical resection of their MRI- and electrophysiologically identified lesions.

View Article and Find Full Text PDF

Background: Subdural electrodes are often implanted for localization of epileptic regions. Postoperative computed tomography (CT) is typically acquired to locate electrode positions for planning any subsequent surgical resection. Electrodes are assumed to remain stationary between CT acquisition and resection surgery.

View Article and Find Full Text PDF

Background: Current methods of spine registration for image guidance have a variety of limitations related to accuracy, efficiency, and cost.

Objective: To define the accuracy of stereovision-mediated co-registration of a spinal surgical field.

Methods: A total of 10 explanted porcine spines were used.

View Article and Find Full Text PDF

OBJECTIVE The objective of this study was to detect 5-aminolevulinic acid (ALA)-induced tumor fluorescence from glioma below the surface of the surgical field by using red-light illumination. METHODS To overcome the shallow tissue penetration of blue light, which maximally excites the ALA-induced fluorophore protoporphyrin IX (PpIX) but is also strongly absorbed by hemoglobin and oxyhemoglobin, a system was developed to illuminate the surgical field with red light (620-640 nm) matching a secondary, smaller absorption peak of PpIX and detecting the fluorescence emission through a 650-nm longpass filter. This wide-field spectroscopic imaging system was used in conjunction with conventional blue-light fluorescence for comparison in 29 patients undergoing craniotomy for resection of high-grade glioma, low-grade glioma, meningioma, or metastasis.

View Article and Find Full Text PDF

Background: The use of image guidance during spinal surgery has been limited by several anatomic factors such as intervertebral segment motion and ineffective spine immobilization. In its current form, the surgical field is coregistered with a preoperative computed tomography (CT), often obtained in a different spinal confirmation, or with intraoperative cross-sectional imaging. Stereovision offers an alternative method of registration.

View Article and Find Full Text PDF

Background: In open-cranial neurosurgery, preoperative magnetic resonance (pMR) images are typically coregistered for intraoperative guidance. Their accuracy can be significantly degraded by intraoperative brain deformation, especially when resection is involved.

Objective: To produce model updated MR (uMR) images to compensate for brain shift that occurred during resection, and evaluate the performance of the image-updating process in terms of accuracy and computational efficiency.

View Article and Find Full Text PDF

In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined.

View Article and Find Full Text PDF