Publications by authors named "John G Doench"

Cancer cells are acutely dependent on nuclear transport due to elevated transcriptional activity, suggesting an unrealized opportunity for selective therapeutic inhibition of the nuclear pore complex. Through large-scale phenotypic profiling of cancer cell lines, genome-scale functional genomic modifier screens, and mass spectrometry-based proteomics, we discovered that the clinical drug PRLX-93936 is a molecular glue that binds and reprograms the TRIM21 ubiquitin ligase to degrade the nuclear pore complex. Upon compound-induced TRIM21 recruitment, the nuclear pore is ubiquitylated and degraded, resulting in the loss of short-lived cytoplasmic mRNA transcripts and induction of cancer cell apoptosis.

View Article and Find Full Text PDF

Malaria continues to pose significant health challenges globally despite advances in control measures. Plasmodium falciparum, the parasite responsible for most severe malaria cases, uses multiple redundant invasion pathways to enter the red blood cell (RBC) during the blood stage of infection. Through a combination of RNA interference screening in erythroid cells and validation by CRISPR/Cas9-mediated knockout in primary human hematopoietic stem cells, we identified the glycosyltransferase Core 1 Synthase Glycoprotein-N-Acetylgalactosamine 3-Beta-Galactosyltransferase 1 (C1GALT1) as a novel host determinant for P.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is a highly aggressive malignancy that lacks effective targeted therapies, in part due to frequent loss-of-function mutations in tumor suppressors and the absence of recurrent oncogenic drivers. Approximately 15% of SCLCs harbor inactivating mutations in NOTCH1 or NOTCH2, and most neuroendocrine-high SCLCs exhibit low NOTCH activity. Using CRISPR-Cas9 screening in primary cell lines derived from NOTCH1/2-isogenic SCLC genetically engineered mouse models, we identified TRIM28 as a synthetic lethal dependency in NOTCH2-inactivated SCLCs.

View Article and Find Full Text PDF

Small-cell lung cancers (SCLCs) contain near-universal loss-of-function mutations in RB1 and TP53, compromising the G1-S checkpoint and leading to dysregulated E2F activity. Other cancers similarly disrupt the G1-S checkpoint through loss of CDKN2A or amplification of cyclin D or cyclin E, also resulting in excessive E2F activity. Although E2F activation is essential for cell cycle progression, hyperactivation promotes apoptosis, presenting a therapeutic vulnerability.

View Article and Find Full Text PDF
Article Synopsis
  • In vivo CRISPR screens have identified key targets for cancer immunotherapy in CD8 T cells, but many genome regions still need further exploration.
  • Researchers studied 899 genes in CD8 T cells reacting to melanoma and found that the E3 ubiquitin ligase STUB1 negatively regulates anti-tumor CD8 T cell function.
  • Knocking out Stub1 leads to better tumor control in mouse models by affecting cytokine receptor expression, especially interleukin-27 receptor α, suggesting that targeting the STUB1-CHIC2 pathway could boost anti-tumor immunity in CD8 T cells.
View Article and Find Full Text PDF

Cell Painting images offer valuable insights into a cell's state and enable many biological applications, but publicly available arrayed datasets only include hundreds of genes perturbed. The JUMP Cell Painting Consortium perturbed roughly 75% of the protein-coding genome in human U-2 OS cells, generating a rich resource of single-cell images and extracted features. These profiles capture the phenotypic impacts of perturbing 15,243 human genes, including overexpressing 12,609 genes (using open reading frames) and knocking out 7,975 genes (using CRISPR-Cas9).

View Article and Find Full Text PDF

The DNA-incorporating nucleoside analogs azacytidine (AZA) and decitabine (DEC) have clinical efficacy in blood cancers, yet the precise mechanism by which these agents kill cancer cells has remained unresolved - specifically, whether their anti-tumor activity arises from conventional DNA damage or DNA hypomethylation via DNA methyltransferase 1 (DNMT1) inhibition. This incomplete mechanistic understanding has limited their broader therapeutic application, particularly in solid tumors, where early clinical trials showed limited efficacy. Here, through the assessment of drug sensitivity in over 600 human cancer models and comparison to a non-DNA-damaging DNMT1 inhibitor (GSK-3685032), we establish DNA hypomethylation, rather than DNA damage, as the primary killing mechanism of AZA and DEC across diverse cancer types.

View Article and Find Full Text PDF

Identifying receptors for bat coronaviruses is critical for spillover risk assessment, countermeasure development, and pandemic preparedness. While Middle East respiratory syndrome coronavirus (MERS-CoV) uses DPP4 for entry, the receptors of many MERS-related betacoronaviruses remain unknown. The bat merbecovirus HKU5 was previously shown to have an entry restriction in human cells.

View Article and Find Full Text PDF

Macrophages in the tumor microenvironment exert potent anti-tumorigenic activity through phagocytosis. Yet therapeutics that enhance macrophage phagocytosis have not improved outcomes in clinical trials for patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). To systematically identify regulators of phagocytosis, we performed genome-scale CRISPR knockout screens in human leukemia cells co-cultured with human monocyte-derived macrophages.

View Article and Find Full Text PDF

Unlabelled: Inactivation of the VHL gene stabilizes HIF2α, which drives clear-cell renal cell carcinoma (ccRCC). The HIF2α inhibitor belzutifan is approved for ccRCC treatment, but de novo and acquired resistance are common. HIF2α, bound to ARNT, transcriptionally activates many genes.

View Article and Find Full Text PDF

A critical goal in functional genomics is evaluating which non-coding elements contribute to gene expression, cellular function, and disease. Functional characterization remains a challenge due to the abundance and complexity of candidate elements. Here, we develop a CRISPRi-based approach for multi-locus screening of putative transcription factor binding sites with a single truncated guide.

View Article and Find Full Text PDF

(Mtb) has evolved to be exquisitely adapted to survive within host macrophages. The capacity to damage the phagosomal membrane has emerged as central to Mtb virulence. While Mtb factors driving membrane damage have been described, host factors that maintain phagosomal integrity or repair Mtb-induced damage to contain the pathogen remain largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Large-scale genetic screenings have identified many cancer dependencies, but rare cancers are often overlooked, leaving their dependencies unclear.
  • We conducted CRISPR knockout screens in translocation renal cell carcinoma (tRCC), uncovering new dependencies in mitochondrial function and kidney lineage pathways.
  • Using machine learning, we predicted gene dependencies in other rare cancers like alveolar soft part sarcoma (ASPS) and explored data from a large tumor repository, identifying potential targets for treatment in several rare cancer types.
View Article and Find Full Text PDF

To dissect variant-function relationships in the KRAS oncoprotein, we performed deep mutational scanning (DMS) screens for both wild-type and KRAS mutant alleles. We defined the spectrum of oncogenic potential for nearly all possible variants, identifying several novel transforming alleles and elucidating a model to describe the frequency of mutations in human cancer as a function of transforming potential, mutational probability, and tissue-specific mutational signatures. Biochemical and structural analyses of variants identified in a KRAS second-site suppressor DMS screen revealed that attenuation of oncogenic KRAS can be mediated by protein instability and conformational rigidity, resulting in reduced binding affinity to effector proteins, such as RAF and PI3-kinases, or reduced SOS-mediated nucleotide exchange activity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the balance between T helper type 1 (T1) and other T cell types is maintained, which is crucial for effective antiviral and anti-tumor responses.
  • Researchers utilized a specialized culture system and CRISPR screens to uncover regulators that influence T cell differentiation, focusing on the role of RAMP3 and its interactions with the neuropeptide CGRP.
  • Findings reveal that after viral infection, neuron-produced CGRP enhances T1 and CD8 T cell responses via RAMP3, creating a neuroimmune circuit that aids in controlling acute viral infections.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how ancient viruses, like herpes, move their protective capsids from the nucleus to the cytoplasm in infected cells.
  • They found that these viruses use a process involving a host protein called CLCC1, crucial for the fusion of capsids with the inner nuclear membrane.
  • The absence of CLCC1 hampers viral spread and leads to problems within the cell's structures, indicating that viruses have evolved to exploit ancient cellular mechanisms for their transmission.
View Article and Find Full Text PDF

CD8+ T cells differentiate into two subpopulations in response to acute viral infection: memory precursor effector cells (MPECs) and short-lived effector cells (SLECs). MPECs and SLECs are epigenetically distinct; however, the epigenetic regulators required for formation of these subpopulations are mostly unknown. In this study, we performed an in vivo CRISPR screen in murine naive CD8+ T cells to identify the epigenetic regulators required for MPEC and SLEC formation, using the acute lymphocytic choriomeningitis virus Armstrong infection model.

View Article and Find Full Text PDF

PD-1 is a key negative regulator of CD8 T cell activation and is highly expressed by exhausted T cells in cancer and chronic viral infection. Although PD-1 blockade can improve viral and tumor control, physiological PD-1 expression prevents immunopathology and improves memory formation. The mechanisms driving high PD-1 expression in exhaustion are not well understood and could be critical to disentangling its beneficial and detrimental effects.

View Article and Find Full Text PDF

Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC).

View Article and Find Full Text PDF

Parasitic diseases, particularly malaria (caused by Plasmodium falciparum) and theileriosis (caused by Theileria spp.), profoundly impact global health and the socioeconomic well-being of lower-income countries. Despite recent advances, identifying host metabolic proteins essential for these auxotrophic pathogens remains challenging.

View Article and Find Full Text PDF

Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC.

View Article and Find Full Text PDF

Reducing disparities is vital for equitable access to precision treatments in cancer. Socioenvironmental factors are a major driver of disparities, but differences in genetic variation likely also contribute. The impact of genetic ancestry on prioritization of cancer targets in drug discovery pipelines has not been systematically explored due to the absence of pre-clinical data at the appropriate scale.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphoinositide-3-kinase-γ (PI3Kγ) is shown to play a critical role in both immune response and cancer cell behavior, particularly in acute leukemias.
  • A specific subset of acute leukemia cells, linked to innate inflammatory signaling, exhibits a dependency on the PI3Kγ complex, which interacts with other proteins like PIK3R5 and PAK1.
  • The selective PI3Kγ inhibitor eganelisib, especially when combined with cytarabine, has demonstrated effectiveness in fighting leukaemias and may be a promising treatment strategy for patients with specific genetic profiles.
View Article and Find Full Text PDF

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics.

View Article and Find Full Text PDF