The rapid emergence of viruses with pandemic potential continues to pose a threat to public health worldwide. With the typical drug discovery pipeline taking an average of 5-10 years to reach clinical readiness, there is an urgent need for strategies to develop broad-spectrum antivirals that can target multiple viral family members and variants of concern. We present a structure-based computational pipeline designed to identify and evaluate broad-spectrum inhibitors across viral family members for a given target in order to support spectrum breadth assessment and prioritization in lead optimization programs.
View Article and Find Full Text PDFSmall molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles.
View Article and Find Full Text PDFSmall molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles.
View Article and Find Full Text PDFAlchemical free energy methods using molecular mechanics (MM) force fields are essential tools for predicting thermodynamic properties of small molecules, especially via free energy calculations that can estimate quantities relevant for drug discovery such as affinities, selectivities, the impact of target mutations, and ADMET properties. While traditional MM forcefields rely on hand-crafted, discrete atom types and parameters, modern approaches based on graph neural networks (GNNs) learn continuous embedding vectors that represent chemical environments from which MM parameters can be generated. Excitingly, GNN parameterization approaches provide a fully end-to-end differentiable model that offers the possibility of systematically improving these models using experimental data.
View Article and Find Full Text PDFIn recent years, machine learning has transformed many aspects of the drug discovery process, including small molecule design, for which the prediction of bioactivity is an integral part. Leveraging structural information about the interactions between a small molecule and its protein target has great potential for downstream machine learning scoring approaches but is fundamentally limited by the accuracy with which protein-ligand complex structures can be predicted in a reliable and automated fashion. With the goal of finding practical approaches to generating useful kinase-inhibitor complex geometries for downstream machine learning scoring approaches, we present a kinase-centric docking benchmark assessing the performance of different classes of docking and pose selection strategies to assess how well experimentally observed binding modes are recapitulated in a realistic cross-docking scenario.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2024
We describe version 2 of the SPICE data set, a collection of quantum chemistry calculations for training machine learning potentials. It expands on the original data set by adding much more sampling of chemical space and more data on noncovalent interactions. We train a set of potential energy functions called Nutmeg on it.
View Article and Find Full Text PDFRecent advances in machine learning (ML) are reshaping drug discovery. Structure-based ML methods use physically-inspired models to predict binding affinities from protein:ligand complexes. These methods promise to enable the integration of data for many related targets, which addresses issues related to data scarcity for single targets and could enable generalizable predictions for a broad range of targets, including mutants.
View Article and Find Full Text PDFThe development of reliable and extensible molecular mechanics (MM) force fields-fast, empirical models characterizing the potential energy surface of molecular systems-is indispensable for biomolecular simulation and computer-aided drug design. Here, we introduce a generalized and extensible machine-learned MM force field, espaloma-0.3, and an end-to-end differentiable framework using graph neural networks to overcome the limitations of traditional rule-based methods.
View Article and Find Full Text PDFDrug discovery is stochastic. The effectiveness of candidate compounds in satisfying design objectives is unknown ahead of time, and the tools used for prioritization-predictive models and assays-are inaccurate and noisy. In a typical discovery campaign, thousands of compounds may be synthesized and tested before design objectives are achieved, with many others ideated but deprioritized.
View Article and Find Full Text PDFAtomic partial charges are crucial parameters in molecular dynamics simulation, dictating the electrostatic contributions to intermolecular energies and thereby the potential energy landscape. Traditionally, the assignment of partial charges has relied on surrogates of ab initio semiempirical quantum chemical methods such as AM1-BCC and is expensive for large systems or large numbers of molecules. We propose a hybrid physical/graph neural network-based approximation to the widely popular AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC implementations.
View Article and Find Full Text PDFThis letter gives results on improving protein-ligand binding affinity predictions based on molecular dynamics simulations using machine learning potentials with a hybrid neural network potential and molecular mechanics methodology (NNP/MM). We compute relative binding free energies with the Alchemical Transfer Method and validate its performance against established benchmarks and find significant enhancements compared with conventional MM force fields like GAFF2.
View Article and Find Full Text PDFThis letter gives results on improving protein-ligand binding affinity predictions based on molecular dynamics simulations using machine learning potentials with a hybrid neural network potential and molecular mechanics methodology (NNP/MM). We compute relative binding free energies (RBFE) with the Alchemical Transfer Method (ATM) and validate its performance against established benchmarks and find significant enhancements compared to conventional MM force fields like GAFF2.
View Article and Find Full Text PDFJ Phys Chem B
January 2024
Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to compute forces and energy.
View Article and Find Full Text PDFKinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. However, the high sequence and structural conservation of the catalytic kinase domain complicate the development of selective kinase inhibitors. Inhibition of off-target kinases makes it difficult to study the mechanism of inhibitors in biological systems.
View Article and Find Full Text PDFMachine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to compute forces and energy.
View Article and Find Full Text PDFIn recent years machine learning has transformed many aspects of the drug discovery process including small molecule design for which the prediction of the bioactivity is an integral part. Leveraging structural information about the interactions between a small molecule and its protein target has great potential for downstream machine learning scoring approaches, but is fundamentally limited by the accuracy with which protein:ligand complex structures can be predicted in a reliable and automated fashion. With the goal of finding practical approaches to generating useful kinase:inhibitor complex geometries for downstream machine learning scoring approaches, we present a kinase-centric docking benchmark assessing the performance of different classes of docking and pose selection strategies to assess how well experimentally observed binding modes are recapitulated in a realistic cross-docking scenario.
View Article and Find Full Text PDFMachine learning potentials have emerged as a means to enhance the accuracy of biomolecular simulations. However, their application is constrained by the significant computational cost arising from the vast number of parameters compared with traditional molecular mechanics. To tackle this issue, we introduce an optimized implementation of the hybrid method (NNP/MM), which combines a neural network potential (NNP) and molecular mechanics (MM).
View Article and Find Full Text PDFRelative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a graphics processing unit (GPU)-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding.
View Article and Find Full Text PDFJ Chem Theory Comput
June 2023
We introduce the Open Force Field (OpenFF) 2.0.0 small molecule force field for drug-like molecules, code-named Sage, which builds upon our previous iteration, Parsley.
View Article and Find Full Text PDFRelative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a GPU-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding.
View Article and Find Full Text PDFChromatin-binding proteins are critical regulators of cell state in haematopoiesis. Acute leukaemias driven by rearrangement of the mixed lineage leukaemia 1 gene (KMT2Ar) or mutation of the nucleophosmin gene (NPM1) require the chromatin adapter protein menin, encoded by the MEN1 gene, to sustain aberrant leukaemogenic gene expression programs. In a phase 1 first-in-human clinical trial, the menin inhibitor revumenib, which is designed to disrupt the menin-MLL1 interaction, induced clinical responses in patients with leukaemia with KMT2Ar or mutated NPM1 (ref.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2023
A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design.
View Article and Find Full Text PDFKinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. The high sequence and structural conservation of the catalytic kinase domain complicates the development of specific kinase inhibitors. As a consequence, most kinase inhibitors also inhibit off-target kinases which complicates the interpretation of phenotypic responses.
View Article and Find Full Text PDF