In ruminants, the corpus luteum (CL) of early pregnancy is resistant to luteolysis. Prostaglandin (PG)E2 is considered a luteoprotective mediator. Early studies indicate that during maternal recognition of pregnancy (MRP) in ruminants, a factor(s) from the conceptus or gravid uterus reaches the ovary locally through the utero-ovarian plexus (UOP) and protects the CL from luteolysis.
View Article and Find Full Text PDFThe corpus luteum (CL) is a transient endocrine gland. Functional and structural demise of the CL allows a new estrous cycle. On the other hand, survival of CL and its secretion of progesterone are required for the establishment of pregnancy.
View Article and Find Full Text PDFIn ruminants, prostaglandin F2 alpha (PGF2alpha) is synthesized and released in a pulsatile pattern from the endometrial luminal epithelial (LE) cells during the process of luteolysis. Interferon tau (IFNT) is a Type 1 IFN secreted by the trophoblast cells of the developing conceptus. IFNT acts locally on endometrial LE cells to inhibit pulsatile releases of PGF2alpha and thus establish an endocrine environment for recognition of pregnancy.
View Article and Find Full Text PDFIn ruminants, prostaglandin F2 alpha (PGF2(alpha)) is synthesized and released in a pulsatile pattern from the endometria luminal epithelial (LE) cells during the process of luteolysis. Prostaglandin transporter (PGT) is a 12-transmembrane solute carrier organic anion transporter protein that facilitates transport of PGF2(alpha). The present study determined the effects of inhibition of PGT protein on pulsatile release of luteolytic PGF2(alpha) and the underlined cell-signaling mechanisms.
View Article and Find Full Text PDFIn ruminants, endometrial prostalgandin (PG) F(2alpha) causes functional luteolysis, whereas luteal synthesis of PGF(2alpha) is required for structural luteolysis. PGE(2) is considered to be a luteoprotective mediator. Molecular aspects of luteal PGF(2alpha) and PGE(2) biosynthesis and signaling during the estrous cycle and establishment of pregnancy are largely unknown.
View Article and Find Full Text PDFIn ruminants, prostaglandin F2alpha (PGF(2alpha)) is the uterine luteolytic hormone. During luteolysis, PGF(2alpha) is synthesized and released from the endometrium in a pulsatile pattern. The unique structure of the vascular utero-ovarian plexus (UOP) allows transport of luteolytic PGF(2alpha) pulses directly from the uterus to the ovary, thus bypassing the systemic circulation.
View Article and Find Full Text PDFDomest Anim Endocrinol
July 2008
It has been suggested that nitric oxide (NO) acts in either an anti-luteolytic or in a luteolytic manner, but the mechanism for these opposing roles is unclear. We hypothesized that NO may act in a dose-dependent manner to regulate luteal function, whereby low concentrations of NO might stimulate luteal progesterone production (i.e.
View Article and Find Full Text PDFThree separate in vivo experiments were conducted to evaluate the putative role of endothelin-1 (ET-1) during luteal regression in heifers. In Experiment 1, a single intraluteal injection of 500 microg BQ-610 [(N,N-hexamethylene) carbamoyl-Leu-D-Trp (CHO)-D-Trp], a highly specific endothelin A (ETA) receptor antagonist, did not diminish the decline in plasma progesterone following a single exogenous injection of 25 mg prostaglandin F2 alpha (PGF2alpha) administered at midcycle of the estrous cycle. In Experiment 2, six intrauterine infusions of 500 microg BQ-610 given every 12 h on days 16-18 delayed spontaneous luteolysis, as evidenced by an extended elevation (P=0.
View Article and Find Full Text PDFProstaglandin F(2alpha) (PGF(2alpha)) typically initiates a cascade of events that leads to the functional and structural demise of the corpus luteum. A sheep model was used in which a 1-h, systemic infusion of PGF(2alpha) (20 microg/min) is given at midcycle. Such an infusion mimics the onset of spontaneous luteolysis by causing a transient decrease in peripheral plasma progesterone, which reaches a nadir ( approximately 60% of controls) at 8 h but returns to control levels by 16-24 h.
View Article and Find Full Text PDF