Biochim Biophys Acta Mol Basis Dis
January 2025
Pregnancy may be a challenging period for the maternal systems and has been regarded as a stress test, as imperceptible/mild dysfunctions eventually present may be exacerbated during this period. The cardiovascular system is no exception, and several morphological and functional adaptations accompanying pregnancy have been described. However, long-term pregnancy-induced cardiac molecular alterations remain highly unexplored.
View Article and Find Full Text PDFMaternal obesity (MO) is rising worldwide, affecting half of all gestations, constituting a possible risk-factor for some pregnancy-associated liver diseases (PALD) and hepatic diseases. PALD occur in approximately 3% of pregnancies and are characterized by maternal hepatic oxidative stress (OS) and mitochondrial dysfunction. Maternal hepatic disease increases maternal and fetal morbidity and mortality.
View Article and Find Full Text PDFEur J Clin Invest
November 2023
Background: The consumption of high-caloric diets strongly contributes to the development of non-communicable diseases (NCDs), including cardiovascular disease, the leading cause of mortality worldwide. Exercise (along with diet intervention) is one of the primary non-pharmacological approaches to promote a healthier lifestyle and counteract the rampant prevalence of NCDs. The present study evaluated the effects of exercise cessation after a short period training on the cardiac metabolic and mitochondrial function of female rats.
View Article and Find Full Text PDFAim/hypothesis: Efficiency in controlling chronic diseases, especially in the primary care setting, is associated with reduced rates of hospitalizations. Poorly controlled diabetes is associated with severe diabetic decompensation, such as diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS). It is hypothesized that, in addition to the SARS-CoV2 pandemic, there was a parallel increase in decompensation of previously controlled chronic diseases, such as diabetes.
View Article and Find Full Text PDFBiomolecules
October 2021
Mitochondriotropic antioxidants (MC, MC, MC and MC) based on dietary antioxidants and analogs (caffeic, hydrocaffeic, trihydroxyphenylpropanoic and trihydroxycinnamic acids) were developed. In this study, we evaluate and compare the cytotoxicity profile of novel mitochondria-targeted molecules (generally known as MitoCINs) on human HepG2 and differentiated SH-SY5Y cells with the quinone-based mitochondria-targeted antioxidants MitoQ and SkQ and with two non-targeted antioxidants, resveratrol and coenzyme Q (CoQ). We further evaluate their effects on mitochondrial membrane potential, cellular oxygen consumption and extracellular acidification rates.
View Article and Find Full Text PDFSeveral environmental pollutants, including pesticides, herbicides and persistent organic pollutants play an important role in the development of chronic diseases. However, most studies have examined environmental pollutants toxicity in target organisms or using a specific toxicological test, losing the real effect throughout the ecosystem. In this sense an integrative environmental risk of pollutants assessment, using different model organisms is necessary to predict the real impact in the ecosystem and implications for target and non-target organisms.
View Article and Find Full Text PDFPoor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity.
View Article and Find Full Text PDFOxidative stress biomarkers are powerful endpoints in toxicological research. Cellular reductive/oxidative balance affects numerous signaling pathways involving HO. Detoxification and control of HO levels results mainly from catalase activity.
View Article and Find Full Text PDFThe protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G.
View Article and Find Full Text PDFLow molecular weight reactive chemicals causing skin and respiratory allergies are known to activate dendritic cells (DC), an event considered to be a key step in both pathologies. Although generation of reactive oxygen species (ROS) is considered a major danger signal responsible for DC maturation, the mechanisms leading to cellular redox imbalance remain poorly understood. Therefore, the aim of this study was to unveil the origin and kinetics of redox imbalance elicited by 1-fluoro-2,4-dinitrobenzene (DNFB) and trimellitic anhydride chloride (TMAC), two golden standards of skin and chemical respiratory allergy, respectively.
View Article and Find Full Text PDFPharm Biol
December 2017
Context: Orange Jessamine [Murraya paniculata L. (Rutaceae)] has been used worldwide in folk medicine as an anti-inflammatory, antibiotic and analgesic.
Objective: The objective of this study is to investigate the in vitro antioxidant, cytotoxic, antibacterial and antifungal activity and the time-kill curve studies of orange jessamine essential oil and β-caryophyllene, as well as the chemical composition of the essential oil.
Curr Drug Targets
April 2018
Background: An intricate interplay between innate and adaptive immune cells is crucial for an effective immune response during disease, infection and vaccination. This interplay is mainly performed by dendritic cells (DCs), which are professional antigen presenting cells with unparalleled capacity to translate innate to adaptive immunity. They effectively recognize and uptake antigens, migrate to lymphoid tissues, and activate naïve T-cells.
View Article and Find Full Text PDFOccupational exposure to low molecular weight reactive chemicals often leads to development of allergic reactions such as allergic contact dermatitis and respiratory allergies. Further insights into the interaction of these chemicals with physiopathological relevant cellular models might provide the foundations for novel non-animal approaches to safety assessment. In this work we used the human THP-1 cell line to determine phospholipidome changes induced by the skin sensitizer 1-fluoro-2,4-dinitrobenzene (DNFB), the respiratory allergen hexamethylene diisocyanate (HDI), and the irritant methyl salicylate (MESA).
View Article and Find Full Text PDFInflammation is a defensive response of the organism to manage harmful stimuli sensed by innate immune cells. The signal alarm is triggered by the recognition of pathogen-associated molecular patterns, such as microbial components, or host-derived damage-associated molecular patterns (DAMPs), namely high-mobility group box 1 protein (HMGB1) and purine metabolites, through a set of highly conserved receptors in immune cells termed pattern recognition receptors. Among these receptors, membrane-associated toll-like receptors (TLRs) and cytosolic nucleotide binding and oligomerization domain (nod)-like receptors (NLRs) assume particular relevance in the inflammatory process.
View Article and Find Full Text PDFThe pathogenesis of allergic contact dermatitis, the most common manifestation of immunotoxicity in humans, is intimately connected to hapten-induced maturation of dendritic cells (DC). The molecular mechanisms driving this maturational program are not completely known; however, initial danger signals such as the generation of reactive oxygen species (ROS) were shown to play a critical role. Recent evidence linking ROS production, endoplasmic reticulum (ER) stress, and the pathogenesis of several inflammatory diseases led us to analyze, in the present work, the ability of the skin sensitizer 1-fluoro-2,4-dinitrobenzene (DNFB) to evoke ER stress in DC-like THP-1 cells and the concomitant consequences to their immunobiology.
View Article and Find Full Text PDFThe sensitizing potential of chemicals is currently assessed using animal models. However, ethical and economic concerns and the recent European legislative framework triggered intensive research efforts in the development and validation of alternative methods. Therefore, the aim of this study was to develop an in vitro predictive test based on the analysis and integration of gene expression and intracellular signaling profiles of chemical-exposed skin-derived dendritic cells.
View Article and Find Full Text PDFMetolachlor is one of the most intensively used chloroacetamide herbicides. However, its effects on the environment and on non-target animals and humans as well as its interference at a cell/molecular level have not yet been fully elucidated. The aim of this study was: firstly, to evaluate the potential toxicity of metolachlor at a cell/subcellular level by using two in vitro biological model systems (a strain of Bacillus stearothermophilus and rat liver mitochondria); secondly, to evaluate the relative sensibility of these models to xenobiotics to reinforce their suitability for pollutant toxicity assessment.
View Article and Find Full Text PDF