Publications by authors named "Jing-Hong Wan"

Metabolic dysfunction-associated steatotic liver disease (MASLD), and its more advanced stage metabolic dysfunction-associated steatohepatitis, is the most common chronic liver disease, constituting a major public health issue. Relevant preclinical models are needed to define molecular mechanisms underlying MASLD pathogenesis and evaluate therapeutic approaches. The majority of the lipids accumulating in the liver upon MASLD originate from adipose tissue and appropriate models to study the liver-adipose tissue dialog are also needed.

View Article and Find Full Text PDF

Background & Aims: Liver regeneration is a repair process in which metabolic reprogramming of parenchymal and inflammatory cells plays a major role. Monoacylglycerol lipase (MAGL) is an ubiquitous enzyme at the crossroad between lipid metabolism and inflammation. It converts monoacylglycerols into free fatty acids and metabolises 2-arachidonoylglycerol into arachidonic acid, being thus the major source of pro-inflammatory prostaglandins in the liver.

View Article and Find Full Text PDF

Objective: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans.

Design: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice.

View Article and Find Full Text PDF

Control of systemic and hepatic inflammation, in particular originating from monocytes/macrophages, is crucial to prevent liver fibrosis and its progression to end-stage cirrhosis. LC3-associated phagocytosis (LAP) is a non-canonical form of autophagy that shifts the monocyte/macrophage phenotype to an anti-inflammatory phenotype. In a recent study, we uncovered LAP as a protective mechanism against inflammation-driven liver fibrosis and systemic inflammation in the context of cirrhosis.

View Article and Find Full Text PDF

Sustained hepatic and systemic inflammation, particularly originating from monocytes/macrophages, is a driving force for fibrosis progression to end-stage cirrhosis and underlies the development of multiorgan failure. Reprogramming monocyte/macrophage phenotype has emerged as a strategy to limit inflammation during chronic liver injury. Here, we report that LC3-associated phagocytosis (LAP), a noncanonical form of autophagy, protects against hepatic and systemic inflammation during chronic liver injury in rodents, with beneficial antifibrogenic effects.

View Article and Find Full Text PDF

Background: Inflammation involves a heterogeneous macrophage population, for which there is no readily available MR assessment method.

Purpose: To assess the feasibility of distinguishing proinflammatory M1 and antiinflammatory M2 macrophages at MRI enhanced with gadolinium liposomes or ultrasmall superparamagnetic iron oxide particles.

Study Type: In vitro.

View Article and Find Full Text PDF

Objective: Sustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid.

View Article and Find Full Text PDF

Background & Aims: In immune cells, constitutively and acutely produced type I interferons (IFNs) engage autocrine/paracrine signaling pathways to induce IFN-stimulated genes (ISGs). Enhanced activity of IFN signaling pathways can cause excessive inflammation and tissue damage. We aimed to investigate ISG expression in systemic immune cells from patients with decompensated alcoholic cirrhosis, and its association with outcome.

View Article and Find Full Text PDF

Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury.

View Article and Find Full Text PDF
[Progress in human disease proteomics].

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

June 2002

In the post-genomic era, with the accomplishment of the sequence mapping of human genome, one of the most important tasks for life science is the explanation and identification of human genome, that is, about 1/3 genes of human genome and their functions need further revealment and verification on the level of protein. In the field of functional proteomics, the human disease proteomics shows great potential in the discovery of new molecular targets and biomarkers for medicine and biopharmacy. In this article, we have made a concise discussion on the current status, existing problems and future development in the research of human disease proteomics both in and out of China.

View Article and Find Full Text PDF

Proteome means the total proteins expressed by the genome in a cell or tissue. Two-dimensional electrophoresis (2-DE) is now the most powerful separating technique and the key separation method used in proteome. Peptide mass fingerprinting (PMF) is becoming a widely used and vastly developed technique for protein identification in 2-D gels.

View Article and Find Full Text PDF