Publications by authors named "Jin Saem Lee"

Human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs), induced pluripotent stem cells, and somatic cell nuclear transfer (SCNT)-hESCs can permanently self-renew while maintaining their capacity to differentiate into any type of somatic cells, thereby serving as an important cell source for cell therapy. However, there are persistent challenges in the application of hPSCs in clinical trials, where one of the most significant is graft rejection by the patient immune system in response to human leukocyte antigen (HLA) mismatch when transplants are obtained from an allogeneic (non-self) cell source. Homozygous SCNT-hESCs (homo-SCNT-hESCs) were used to simplify the clinical application and to reduce HLA mismatch.

View Article and Find Full Text PDF

Background: There are currently no disease-modifying therapeutics for Parkinson's disease (PD). Although extensive efforts were undertaken to develop therapeutic approaches to delay the symptoms of PD, untreated α-synuclein (α-syn) aggregates cause cellular toxicity and stimulate further disease progression. PROTAC (Proteolysis-Targeting Chimera) has drawn attention as a therapeutic modality to target α-syn.

View Article and Find Full Text PDF

Human pluripotent stem cells (PSCs) through somatic cell nuclear transfer (SCNT) may be an important source for regenerative medicine. The low derivation efficiency of stem cells and the accessibility of human oocytes are the main obstacles to their application. We previously reported that the efficiency of SCNT was increased by overexpression of H3K9me3 demethylase.

View Article and Find Full Text PDF