Publications by authors named "Jin Long Yue"

In the framework of algebraic inversion, magnetic resonance elastography (MRE) repeatability, reproducibility and robustness were evaluated on extracted shear velocities (or elastic moduli). The same excitation system was implemented at two sites equipped with clinical MR scanners of 1.5 and 3 T.

View Article and Find Full Text PDF

Back pain is associated with increased lumbar paraspinal muscle (LPM) stiffness identified by manual palpation and strain elastography. Recently, magnetic resonance elastography (MRE) has allowed the stiffness of muscle to be characterized noninvasively in vivo, providing quantitative 3D stiffness maps (elastograms). The aim of this study was to characterize the stiffness (shear modulus, SM) of the LPM (multifidus and erector spinae) using MRE.

View Article and Find Full Text PDF

Magnetic resonance elastography (MRE) is a non invasive imaging modality, which holds the promise of absolute quantification of the mechanical properties of human tissues in vivo. MRE reconstruction with algebraic inversion of the Helmholtz equation upon the curl of the shear displacement field may theoretically be flawless. However, its performances are challenged by multiple experimental parameters, especially the frequency and the amplitude of the mechanical wave, the voxel size and the signal-to-noise ratio of the MRE acquisition.

View Article and Find Full Text PDF