XSP25, previously shown to be the most abundant hydrophilic protein in xylem sap of Populus nigra in winter, belongs to a secretory protein family in which the arrangement of basic and acidic amino acids is conserved between dicotyledonous and monocotyledonous species. Its gene expression was observed at the same level in roots and shoots under long-day conditions, but highly induced under short-day conditions and at low temperatures in roots, especially in endodermis and xylem parenchyma in the root hair region of Populus trichocarpa, and its protein level was high in dormant buds, but not in roots or branches. Addition of recombinant PtXSP25 protein mitigated the denaturation of lactate dehydrogenase by drying, but showed only a slight effect on that caused by freeze-thaw cycling.
View Article and Find Full Text PDFIce formation remains central to our understanding of the effects of low temperatures on the biological response of cells and tissues. The formation of ice inside of cells and the net increase in crystal size due to recrystallization during thawing is associated with a loss of cell viability during cryopreservation. Because small-molecule ice recrystallization inhibitors (IRIs) can control the growth of extracellular ice, we sought to investigate the ability of two aryl-glycoside-based IRIs to permeate into cells and control intracellular ice recrystallization.
View Article and Find Full Text PDFDuring cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol.
View Article and Find Full Text PDFMost antifreeze proteins (AFPs) exhibit two types of "antifreeze activity" - thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity. The mechanism of TH activity has been studied in depth and is the result of an adsorption of AFPs to the surface of ice with an ice-binding face (IBF). In contrast, the mechanism of ice recrystallization and its inhibition is considerably less understood.
View Article and Find Full Text PDF