Publications by authors named "Jessica E Goetz"

This study investigated the relationship between three-dimensional (3D) acetabular coverage and contact mechanics in dysplastic and ostensibly normal hips. Fifty asymptomatic hips previously imaged with CT scans/angiograms were matched on a 2:1 basis to 25 dysplastic hips with previous CT imaging, based on age, gender, weight, and BMI. CT imaging was used to create 3D patient-specific hip models from which the 3D coverage metrics of subchondral arc angle (i.

View Article and Find Full Text PDF

Hip dysplasia causes pathologic joint mechanics and can produce hip instability, leading to progressive joint degeneration and osteoarthritis. Weight-bearing computed tomography (WBCT) is an emerging technology that may enable quantification of femoral-acetabular displacement as an objective indicator of instability. To evaluate this potential, 10 patients indicated for periacetabular osteotomy to treat hip dysplasia and 10 healthy controls underwent two WBCT protocols.

View Article and Find Full Text PDF

Joint injury precipitates post-traumatic osteoarthritis (PTOA) via chondrocyte mitochondrial oxidative damage. Carbon monoxide (CO) is a small molecule with potent antioxidant and mitochondrial benefits in other tissues that have not been explored in healthy chondrocytes. We hypothesized that CO would subvert the mitochondrial effects of articular cartilage injuries upon resident chondrocytes.

View Article and Find Full Text PDF

Joint trauma often leads to articular cartilage degeneration and post-traumatic osteoarthritis (PTOA). Pivotal determinants include trauma-induced excessive tissue strains that damage cartilage cells. As a downstream effect, these damaged cells can trigger cartilage degeneration via oxidative stress, cell death, and proteolytic tissue degeneration.

View Article and Find Full Text PDF

Fluoroscopic guidance is an integral tool in modern orthopedic surgery often used to track bones and/or bone fragments during a surgical procedure. However, relying upon this intra-operative 2D projective imaging modality for this purpose can challenge a surgeon's ability to interpret 3D position and orientation of any but the simplest bony anatomy. A number of object-tracking technologies have been developed to aid surgeons, but they have failed to be generalizable to a wider array of procedures, have required an unrealistic amount of time and effort to implement, or have unacceptably changed the flow of the surgery.

View Article and Find Full Text PDF

Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h.

View Article and Find Full Text PDF

Wrist and hand biomechanics under full-body load are not fully understood. To identify potential anatomy-related differences in hand loading, 15 former collegiate athletes completed a 45-second handstand on a novel emed® pressure platform system. Center of pressure (CoP) and force distribution across the palmar surface were analysed during the stabilised phase.

View Article and Find Full Text PDF

Posttraumatic osteoarthritis (PTOA) is a well-recognized public health burden without any disease modifying treatment. This occurs despite noted advances in surgical care in the past 50 years. Mitochondrial oxidative damage pathways initiate PTOA after severe injuries like intraarticular fracture that often require surgery and contribute to PTOA after less severe injuries that may or may not require surgery like meniscal injuries.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the 3D anatomy related to the acetabular sourcil, which is used in calculating angles critical for diagnosing hip dysplasia through various imaging techniques.
  • Researchers aimed to assess the consistency of measurements (LCEA and ACEA) taken by different observers and how those measurements relate to the anatomy being evaluated.
  • Using CT scans from 20 patients undergoing hip surgeries, the study generated detailed models to better understand the distinct anatomical regions that influence these radiographic measurements.
View Article and Find Full Text PDF

The objective of this work was to determine the effects of using simplified finite element (FE) mesh geometry in the process of performing reverse iterative fitting to estimate cartilage material parameters from in situ indentation testing. Six bovine tibial osteochondral explants were indented with sequential 5 % step-strains followed by a 600 s hold while relaxation force was measured. Three sets of porous viscohyperelastic material parameters were estimated for each specimen using reverse iterative fitting of the indentation test with (1) 2D axisymmetric, (2) 3D idealized, and (3) 3D specimen-specific FE meshes.

View Article and Find Full Text PDF

The primary objective of this study was to develop a custom algorithm to assess three-dimensional (3D) acetabular coverage of the femoral head based on surface models generated from computed tomography (CT) imaging. The secondary objective was to apply this algorithm to asymptomatic young adult hip joints to assess the regional 3D acetabular coverage variability and understand how these novel 3D metrics relate to traditional two-dimensional (2D) radiographic measurements of coverage. The algorithm developed automatically identifies the lateral- and medial-most edges of the acetabular lunate at one-degree intervals around the acetabular rim based on local radius of curvature.

View Article and Find Full Text PDF

Periacetabular osteotomy (PAO) is a common treatment for prearthritic hip dysplasia. The goal of this investigation was to determine if computationally assessed hip contact mechanics are associated with joint failure at minimum 10-year follow-up. One hundred patients with hip dysplasia (125 hips) completed patient-reported outcomes an average of 13.

View Article and Find Full Text PDF

Computational models of the hip often omit patient-specific functional orientation when placing imaging-derived bony geometry into anatomic landmark-based coordinate systems for application of joint loading schemes. The purpose of this study was to determine if this omission meaningfully alters computed contact mechanics. Discrete element analysis models were created from non-weightbearing (NWB) clinical CT scans of 10 hip dysplasia patients (11 hips) and oriented in the International Society of Biomechanics (ISB) coordinate system (NWB-ISB).

View Article and Find Full Text PDF

Background: Many patients with metastatic bone disease (MBD) of the femur undergo prophylactic surgical fixation for impending pathologic fractures; intramedullary nailing (IMN) being the most common fixation type. However, surgeons often question if IMN fixation provides sufficient improvements in mechanical strength for particular metastatic lesions. Our goal was to use patient-specific finite element (FE) modeling to computationally evaluate the effects of simulated IMN fixation on the mechanics of femurs affected with MBD.

View Article and Find Full Text PDF

Objectives: The objective of this work was to develop a model of intra-articular fracture (IAF) in a rabbit and document the speed and severity of degenerative joint changes after fracture fixation.

Methods: With Institutional Animal Care & Use Committee approval, impact-induced IAFs were created in the distal tibia of 16 New Zealand White rabbits. Fractures were fixed with a plate and screws.

View Article and Find Full Text PDF

Objective: In situ fixation for treatment of slipped capital femoral epiphysis (SCFE) can stabilize the epiphysis and prevent further joint deformation but often leaves residual deformity that may adversely affect intra-articular contact mechanics. The purpose of this study was to investigate the relationship between residual deformity and contact mechanics in the post-SCFE hip.

Methods: Patient-specific hip models were created for 19 patients with SCFE treated with in situ fixation.

View Article and Find Full Text PDF

Aim: Preoperative identification of acetabular corrections that optimally improve joint stability and reduce elevated contact stresses could further reduce osteoarthritis progression in patients with hip dysplasia who are treated with periacetabular osteotomy (PAO). The purpose of this study was to investigate how providing patient-specific, mechanically optimal acetabular reorientations to the surgeon during preoperative planning affected the surgically achieved correction.

Methods: Preoperative CT scans were used to create patient-specific hip models for 6 patients scheduled for PAO.

View Article and Find Full Text PDF

Purpose: Ulnar variance (UV) is a radiographic measurement relating the articular surface heights of the distal radius and ulna. Abnormal UV increases the risk for wrist pathology; however, it only provides a static measurement of an inherently dynamic bony relationship that changes with wrist position and loading. The purpose of this study was to investigate how full-body weight-bearing affects UV using weight-bearing computed tomography (WBCT).

View Article and Find Full Text PDF

Background: Radiotherapy for tumor treatment in or near bones often causes osteopenia and/or osteoporosis, and the resulting increased bone fragility can lead to pathologic fractures. Bone mineral density (BMD) is often used to screen for fracture risk, but no conclusive relationship has been established between BMD and the microstructural/ biomechanical changes in irradiated bone. Understanding the effects of radiation dosing regimen on the bone structure-strength relationship would improve the ability to reduce fracture-related complications resulting from cancer treatment.

View Article and Find Full Text PDF

Background And Objectives: Femurs affected by metastatic bone disease (MBD) frequently undergo surgery to prevent impending pathologic fractures due to clinician-perceived increases in fracture risk. Finite element (FE) models can provide more objective assessments of fracture risk. However, FE models of femurs with MBD have implemented strain- and strength-based estimates of fracture risk under a wide variety of loading configurations, and "physiologic" loading models typically simulate a single abductor force.

View Article and Find Full Text PDF

Background: Optimal correction of hip dysplasia via periacetabular osteotomy may reduce osteoarthritis development by reducing damaging contact stress. The objective of this study was to computationally determine if patient-specific acetabular corrections that optimize contact mechanics can improve upon contact mechanics resulting from clinically successful, surgically achieved corrections.

Methods: Preoperative and postoperative hip models were retrospectively created from CT scans of 20 dysplasia patients treated with periacetabular osteotomy.

View Article and Find Full Text PDF

Metastatic bone disease (MBD) is often managed by non-specialized orthopedic surgeons who rely on Mirels' criteria to predict pathologic fracture risk. However, low specificity of Mirels' criteria implies many lesions are scored at high fracture risk when the actual mechanical fracture risk is minimal. Our goal was to retrospectively compare mechanical fracture risk in MBD patients to Mirels' score and clinical treatment received.

View Article and Find Full Text PDF

While correction of dysplastic acetabular deformity has been a focus of both clinical treatment and research, concurrent femoral deformities have only more recently received serious attention. The purpose of this study was to determine how including abnormalities in femoral head-neck offset and femoral version alter computationally derived contact stresses in patients with combined dysplasia and femoroacetabular impingement (FAI). Hip models with patient-specific bony anatomy were created from preoperative and postoperative CT scans of 20 hips treated with periacetabular osteotomy and femoral osteochondroplasty.

View Article and Find Full Text PDF

Determine if oxidative damage increases in articular cartilage as a result of injury and matrix failure and whether modulation of the local redox environment influences this damage. Osteoarthritis is an age associated disease with no current disease modifying approaches available. Mechanisms of cartilage damage in vitro suggest tissue free radical production could be critical to early degeneration, but these mechanisms have not been described in intact tissue.

View Article and Find Full Text PDF

Articular fracture malreduction increases posttraumatic osteoarthritis (PTOA) risk by elevating joint contact stress. A new biomechanical guidance system (BGS) that provides intraoperative assessment of articular fracture reduction and joint contact stress based solely on a preoperative computed tomography (CT) and intraoperative fluoroscopy may facilitate better fracture reduction. The objective of this proof-of-concept cadaveric study was to test this premise while characterizing BGS performance.

View Article and Find Full Text PDF