Publications by authors named "Jens-Max Hopf"

A fundamental mechanism enabling object permanence for the visual system constitutes visual tracking. During the interaction with a dynamic visual environment we are able to continuously track a multitude of objects simultaneously. Early work suggests that this mechanism is subject to improvement under task-specific behavioral training, though exhibiting a limited transferability to other cognitive tasks.

View Article and Find Full Text PDF

Cognitive flexibility, the ability to adapt one's behaviour in changing environments, declines during aging. Electroencephalography (EEG) studies have implicated midfrontal theta oscillations in attentional set-shifting, a measure of cognitive flexibility. Little is known about the electrocortical underpinnings of set-shifting in aging.

View Article and Find Full Text PDF

Color discrimination is fundamental to human behavior. We find bananas by coarsely searching for yellow but then differentiate nuances of yellow to pick the best exemplars. How does the brain adjust the resolution of color selectivity to our changing needs? Here, we analyze the brain magnetic response in the human visual cortex to show that color selectivity is adaptively set by coarse- and fine-resolving processes running in parallel at different hierarchical levels.

View Article and Find Full Text PDF

Keeping track of multiple visually identical and independently moving objects is a remarkable feature of the human visual system. Theoretical accounts for this ability focus on resource-based models that describe parametric decreases of performance with increasing demands during the task (i.e.

View Article and Find Full Text PDF

The visual system has evolved the ability to track features like color and orientation in parallel. This property aligns with the specialization of processing these feature dimensions in the visual cortex. But what if we ask to track changing feature-values within the same feature dimension? Parallel tracking would then have to share the same cortical representation, which would set strong limitations on tracking performance.

View Article and Find Full Text PDF

Shifting the focus of attention without moving the eyes poses challenges for signal coding in visual cortex in terms of spatial resolution, signal routing, and cross-talk. Little is known how these problems are solved during focus shifts. Here, we analyze the spatiotemporal dynamic of neuromagnetic activity in human visual cortex as a function of the size and number of focus shifts in visual search.

View Article and Find Full Text PDF

Converging evidence shows that our visual system can track multiple visual, independently moving items over time. This is accomplished location-based by maintaining the individual spatial information of each target item or object-based by constructing an abstract object-based representation out of the tracked items. Previous work showed specific behavioural, electrophysiological and haemodynamic markers for location-based or object-based representations of the relevant targets by probing the encoded information subsequently after tracking.

View Article and Find Full Text PDF

Whether doing the shopping, or driving the car - to navigate daily life, our brain has to rapidly identify relevant color signals among distracting ones. Despite a wealth of research, how color attention is dynamically adjusted is little understood. Previous studies suggest that the speed of feature attention depends on the time it takes to enhance the neural gain of cortical units tuned to the attended feature.

View Article and Find Full Text PDF

Visual search has been commonly used to study the neural correlates of attentional allocation in space. Recent electrophysiological research has disentangled distractor processing from target processing, showing that these mechanisms appear to operate in parallel and show electric fields of opposite polarity. Nevertheless, the localization and exact nature of this activity is unknown.

View Article and Find Full Text PDF

Objective: One of the main goals of brain-computer interfaces (BCI) is to restore communication abilities in patients. BCIs often use event-related potentials (ERPs) like the P300 which signals the presence of a target in a stream of stimuli. The P300 and related approaches, however, are inherently limited, as they require many stimulus presentations to obtain a usable control signal.

View Article and Find Full Text PDF

The topographical structure of the visual system in individual subjects can be visualized using fMRI. Recently, a radial bias for the long axis of population receptive fields (pRF) has been shown using fMRI. It has been theorized that the elongation of receptive fields pointing toward the fovea results from horizontal local connections bundling orientation selective units mostly parallel to their polar position within the visual field.

View Article and Find Full Text PDF

Addiction to nicotine is extremely challenging to overcome, and the intense craving for the next cigarette often leads to relapse in smokers who wish to quit. To dampen the urges of craving and inhibit unwanted behaviour, smokers must harness cognitive control, which is itself impaired in addiction. It is likely that craving may interact with cognitive control, and the present study sought to test the specificity of such interactions.

View Article and Find Full Text PDF

Working memory capacity (WMC) varies tremendously among individuals. Here, we investigate the possibility that subjects with high WMC use this limited resource more efficiently by reducing the precision with which they store information in demanding tasks. Task difficulty was increased by (a) presenting more objects to be memorized, (b) informing subjects only after the encoding phase about the relevant objects, and (c) delivering distracting features at retrieval.

View Article and Find Full Text PDF

Temporal regularities in the environment are often learned implicitly. In an auditory target-detection paradigm using EEG, Jongsma and colleagues (2006) showed that the neural response to these implicit regularities results in a reduction of the P3-N2 complex. Here, we utilized the same paradigm, this time in both young and old participants, to determine if this EEG signature of implicit learning was altered with age.

View Article and Find Full Text PDF

Objects that promise rewards are prioritized for visual selection. The way this prioritization shapes sensory processing in visual cortex, however, is debated. It has been suggested that rewards motivate stronger attentional focusing, resulting in a modulation of sensory selection in early visual cortex.

View Article and Find Full Text PDF

In visual search, the more one knows about a target, the faster one can find it. Surprisingly, target identification is also faster with knowledge about distractor-features. The latter is paradoxical, as it implies that to avoid the selection of an item, the item must somehow be selected to some degree.

View Article and Find Full Text PDF

Estimates of visual field topographies in human visual cortex obtained through fMRI traveling wave techniques usually provide the parameters of population receptive field (pRF) location (polar angle, eccentricity) and receptive field size. These parameters are obtained by fitting the recorded data to a standard model population receptive field. In this work, pRF profiles are measured directly by back-projecting preprocessed fMRI time-series to sweeps of a bar across the visual field in different angles.

View Article and Find Full Text PDF

Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity.

View Article and Find Full Text PDF

The present study investigated the neural correlates associated with gait improvements triggered by an active prosthesis in patients with drop-foot following stroke during the chronic stage. Eleven patients took part in the study. MEG recordings in conjunction with somatosensory stimulation of the left and right hand as well as gait analyses were performed shortly before or after prosthesis implantation surgery and 3-4 months later.

View Article and Find Full Text PDF

Chronic pain is suggested to be linked to reorganization processes in the sensorimotor cortex. In the current study, the somatosensory representation of the extremities was investigated in a patient with a complex regional pain syndrome (CRPS) that initially occurred in the right hand and arm and spread later into the left hand and right leg. After the spread, magnetoencephalographic recordings in conjunction with somatosensory stimulation revealed that the clinical symptoms were associated with major changes in the primary somatosensory representation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the neuronal networks involved in filtering and storing information within visual working memory (WM), focusing on age-related changes in these processes.
  • Using fMRI, the research employed a new paradigm to assess how filtering and storage demands affect brain activity in younger (40) and older (38) participants, controlling for perceptual load effectively.
  • Results showed that older adults activated more brain regions than younger adults for the same tasks, indicating they may require more neural resources to achieve similar accuracy in memory tasks.
View Article and Find Full Text PDF

Subjects can visually track several moving items simultaneously, a fact that is difficult to explain by classical attention models. Previous work revealed that building a global shape based on the spatial position of the tracked items improves performance. Here we investigated the involved neural processes and the role of attention.

View Article and Find Full Text PDF

It has been suggested that over the course of an addiction, addiction-related stimuli become highly salient in the environment, thereby capturing an addict's attention. To assess these effects neurally in smokers, and how they interact with craving, we recorded electroencephalography (EEG) in two sessions: one in which participants had just smoked (non-craving), and one in which they had abstained from smoking for 3 h (craving). In both sessions, participants performed a visual-search task in which two colored squares were presented to the left and right of fixation, with one color being the target to which they should shift attention and discriminate the locations of two missing corners.

View Article and Find Full Text PDF

The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC).

View Article and Find Full Text PDF