Hepatic thyroid hormone action plays an important role in preventing the development and progression of metabolic liver diseases, as evidenced by the recent success of the receptor-specific agonist resmetirom. The liver enzyme deiodinase type I (DIO1) is important for controlling the local availability of thyroid hormone and is upregulated in metabolically associated steatotic liver disease (MASLD), which is thought to be a compensatory mechanism to enhance local hormone action. However, it remains unclear whether this increase is maintained in later stages of MASLD and whether an induction of Dio1 can provide beneficial metabolic effects.
View Article and Find Full Text PDFThyroid hormones (THs) are critical regulators of systemic energy metabolism and homeostasis. In the liver, high TH action protects against steatosis by enhancing cholesterol and triglyceride turnover, with thyroid hormone receptor beta (THRB) signaling playing a pivotal role. This study probed the potential interaction between THRB action and another critical regulator of liver energy metabolism, the circadian clock.
View Article and Find Full Text PDFObjective: Hypothalamic energy sensors, such as AMP-activated protein kinase (AMPK), and stress sensors, such as c-Jun N-terminal kinase 1 (JNK1, also known as MAPK8) modulate whole body energy balance. While the role of AMPK in steroidogenic factor 1 (SF1) neurons of the VMH has been investigated, the relevance of JNK1 in this neuronal population has not been addressed. Here, we investigated the involvement of JNK1 SF1 on energy homeostasis.
View Article and Find Full Text PDFThyroid hormone receptor α1 (TRα1) regulates body temperature and heart rate in humans and mice. In addition to its direct actions in target tissues, it also affects peripheral functions indirectly through the brain. While these central actions on peripheral tissues have been demonstrated for liver and brown fat, the consequences for cardiac functions are still enigmatic.
View Article and Find Full Text PDFRev Endocr Metab Disord
April 2025
As evidenced by the clinical symptoms in hyper- or hypothyroidism, thyroid hormones have strong effects on cardiovascular and metabolic functions. While these actions had been initially attributed to direct molecular mechanisms in the respective peripheral tissues such as heart, muscle or adipose tissue, a recent paradigm shift has occurred with accumulating observations that demonstrated important indirect effects via the brain on these systems. However, the individual contributions of the peripheral versus central thyroid hormone actions for the well-known phenotypical symptoms are still not entirely understood.
View Article and Find Full Text PDFClin Epigenetics
February 2025
Objective: Maternal hormonal status can have long-term effects on offspring metabolic health and is likely regulated via epigenetic mechanisms. We elucidated the effects of maternal thyroid hormones on the epigenetic regulation of leptin (Lep) transcription in adipose tissue (AT) and subsequently investigated the role of DNA methylation at a Lep upstream enhancer (UE) in adipocyte biology.
Results: Pregnant mice treated with triiodothyronine (T3) produced offspring with reduced body weight, total fat mass, and gonadal white adipose tissue (gWAT) mass at 6 months of age (treatment: N = 8; control: N = 12).
The significance of thyroid hormones (THs) in beige adipocyte thermogenesis remains incompletely understood. We previously reported that THs directly regulate the expression of zinc-finger protein 423 (ZFP423), an anti-thermogenic factor, in adipose tissue. This study investigates the interaction between THs and adrenergic signaling in regulating thermogenic capacity and activation of beige adipocytes formed in response to Zfp423 deletion.
View Article and Find Full Text PDFBiofactors
December 2024
Front Endocrinol (Lausanne)
March 2024
Mutations in thyroid hormone receptor α1 (TRα1) cause Resistance to Thyroid Hormone α (RTHα), a disorder characterized by hypothyroidism in TRα1-expressing tissues including the heart. Surprisingly, we report that treatment of RTHα patients with thyroxine to overcome tissue hormone resistance does not elevate their heart rate. Cardiac telemetry in male, TRα1 mutant, mice indicates that such persistent bradycardia is caused by an intrinsic cardiac defect and not due to altered autonomic control.
View Article and Find Full Text PDFThyroid hormones (THs) control a wide range of physiological functions essential for metabolism, growth, and differentiation. On a molecular level, TH action is exerted by nuclear receptors (TRs), which function as ligand-dependent transcription factors. Among several TR isoforms, the function of TRα2 remains poorly understood as it is a splice variant of TRα with an altered C-terminus that is unable to bind T3.
View Article and Find Full Text PDF