Publications by authors named "Jennifer Karlow"

Endogenous retroviral (ERV) RNA is highly expressed in cancer, although the molecular causes and consequences remain unknown. We found that ZC3H18 (Z18), a component of multiple nuclear RNA surveillance complexes, has recurrent truncating mutations in cancer. We show that Z18 mutations are oncogenic and that Z18 plays an evolutionarily conserved role in nuclear RNA surveillance of ERV RNA.

View Article and Find Full Text PDF

LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.

View Article and Find Full Text PDF

Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation).

View Article and Find Full Text PDF
Article Synopsis
  • Transposable elements (TEs) are usually silenced in healthy tissues by DNA methylation but become more active in various cancers, correlating with global hypomethylation in those cancer genomes.
  • The study examined TE expression and DNA methylation during the transformation of fibroblast cells, showing that TE expression significantly increased at each transformation stage, particularly after the final stage, mirroring observations in human tumors.
  • The research highlighted that hypomethylation of TEs started during the immortalization phase and continued into the transformation, with many upregulated TEs being linked to cancers in The Cancer Genome Atlas dataset.
View Article and Find Full Text PDF

Understanding the impact of DNA methylation within different disease contexts often requires accurate assessment of these modifications in a genome-wide fashion. Frequently, patient-derived tissues stored in long-term hospital tissue banks have been preserved using formalin-fixation paraffin-embedding (FFPE). While these samples can comprise valuable resources for studying disease, the fixation process ultimately compromises the DNA's integrity and leads to degradation.

View Article and Find Full Text PDF

Unlabelled: Non-small cell lung cancer (NSCLC) is one of the most commonly diagnosed and deadliest cancers worldwide, with roughly half of all patients initially presenting with both primary and metastatic disease. While the major events in the metastatic cascade have been identified, a mechanistic understanding of how NSCLC routinely and successfully colonizes the brain is largely unknown. Recent studies have begun demonstrating the role of epigenetic misregulation during tumorigenesis and metastasis, including widespread changes in DNA methylation and histone modifications.

View Article and Find Full Text PDF

Trends in altered DNA methylation have been defined across human cancers, revealing global loss of methylation (hypomethylation) and focal gain of methylation (hypermethylation) as frequent cancer hallmarks. Although many cancers share these trends, little is known about the specific differences in DNA methylation changes across cancer types, particularly outside of promoters. Here, we present a comprehensive comparison of DNA methylation changes between two distinct cancers, endometrioid adenocarcinoma (EAC) and glioblastoma multiforme (GBM), to elucidate common rules of methylation dysregulation and changes unique to cancers derived from specific cells.

View Article and Find Full Text PDF