Publications by authors named "Jeffrey J Jones"

Foliar anthocyanins, as well as other secondary metabolites, accumulate transiently under nutritional stress. A misconception that only nitrogen or phosphorus deficiency induces leaf purpling/reddening has led to overuse of fertilizers that burden the environment. Here, we emphasize that several other nutritional imbalances induce anthocyanin accumulation, and nutrient-specific differences in this response have been reported for some deficiencies.

View Article and Find Full Text PDF

Extracellular matrix stiffening is a quintessential feature of cartilage aging, a leading cause of knee osteoarthritis. Yet, the downstream molecular and cellular consequences of age-related biophysical alterations are poorly understood. Here, we show that epigenetic regulation of α-Klotho represents a novel mechanosensitive mechanism by which the aged extracellular matrix influences chondrocyte physiology.

View Article and Find Full Text PDF

Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways.

View Article and Find Full Text PDF

The removal of the N-terminal formyl group on nascent proteins by peptide deformylase (PDF) is the most prevalent protein modification in bacteria. PDF is a critical target of antibiotic development; however, its role in bacterial physiology remains a long-standing question. This work used the time-resolved analyses of the translatome and proteome to investigate the consequences of PDF inhibition.

View Article and Find Full Text PDF

Oxysterols (OHCs) are hydroxylated cholesterol metabolites that play ubiquitous roles in health and disease. Due to the non-covalent nature of their interactions and their unique partitioning in membranes, the analysis of live-cell, proteome-wide interactions of OHCs remains an unmet challenge. Here, we present a structurally precise chemoproteomics probe for the biologically active molecule 20(S)-hydroxycholesterol (20(S)-OHC) and provide a map of its proteome-wide targets in the membranes of living cells.

View Article and Find Full Text PDF

Background: Well-collected and well-documented sample repositories are necessary for disease biomarker development. The availability of significant numbers of samples with the associated patient information enables biomarker validation to proceed with maximum efficacy and minimum bias. The creation and utilization of such a resource is an important step in the development of blood-based biomarker tests for colorectal cancer.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) testing programs reduce mortality; however, approximately 40% of the recommended population who should undergo CRC testing does not. Early colon cancer detection in patient populations ineligible for testing, such as the elderly or those with significant comorbidities, could have clinical benefit. Despite many attempts to identify individual protein markers of this disease, little progress has been made.

View Article and Find Full Text PDF

Purpose: Chemoimmunotherapy has been the standard of care for chronic lymphocytic leukemia (CLL). However, the introduction of B-cell receptor (BCR) kinase inhibitors such as ibrutinib has the potential to eliminate the role of chemotherapy in the treatment of CLL. How to best incorporate old and new therapies for CLL in this landscape is increasingly complex.

View Article and Find Full Text PDF

Background: In patients with chronic lymphoid leukemia (CLL) or small lymphocytic lymphoma (SLL), a short duration of response to therapy or adverse cytogenetic abnormalities are associated with a poor outcome. We evaluated the efficacy of ibrutinib, a covalent inhibitor of Bruton's tyrosine kinase, in patients at risk for a poor outcome.

Methods: In this multicenter, open-label, phase 3 study, we randomly assigned 391 patients with relapsed or refractory CLL or SLL to receive daily ibrutinib or the anti-CD20 antibody ofatumumab.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) are short, double-stranded RNAs that use the endogenous RNAi pathway to mediate gene silencing. Phosphorylation facilitates loading of a siRNA into the Ago2 complex and subsequent cleavage of the target mRNA. In this study, 2', 3' seco nucleoside modifications, which contain an acylic ribose ring and are commonly called unlocked nucleic acids (UNAs), were evaluated at all positions along the guide strand of a siRNA targeting apolipoprotein B (ApoB).

View Article and Find Full Text PDF

Here we describe a study of the feasibility of lipid and phospholipid (PL) profiling using matrix assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) for two different applications. In this work PL profiles of different mammalian tissues as well as those of whole cell organisms were examined. In particular, comparative analysis of lipid and PL profiles of tissues from mice fed different diets was done and, in another application, MALDI FTMS was used to analyze PL profiles of genetically modified Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Discussed here is an analytical method for profiling lipids and phospholipids directly from mammalian tissues excised from Mus musculus (house mouse). Biochemical analysis was accomplished through the use of matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry, where whole tissue sections of mouse brain, heart, and liver were investigated. Lipid and phospholipid ions create complex MALDI mass spectra containing multiple ions with different m/z values corresponding to the same fundamental chemical species.

View Article and Find Full Text PDF

Genetically altered bacteria manipulated to express green fluorescent protein (GFP) were used in an investigation of real-time monitoring for recombinant protein expression in cell by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). A significant advantage to whole cell MALDI MS is its ability to analyze bacterial cultures without pretreatment other than concentration. This paper describes the simultaneous analysis of overexpressed GFP recombinant Escherichia coli JM101 by MALDI-TOF MS and standard fluorescence measurements.

View Article and Find Full Text PDF

Room-temperature ionic liquid matrices (ILMs) have recently been investigated for use in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and proven to be advantageous. Literature accounts of ILM performance for biological samples document increased sensitivity and ionization efficiency. These claims have been investigated here, and are supported for MALDI TOF applications to peptides, oligonucleotides, and phospholipids.

View Article and Find Full Text PDF

Described here is a computationally automated method for translating complex accurate mass spectra into biologically relevant and meaningful data. Rapid profiling of detailed high resolution mass spectra resulting from direct analysis of whole cells and tissues by matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) is discussed. Lipid and phospholipid ions create complex spectra containing multiple m/z values corresponding to the same fundamental chemical species.

View Article and Find Full Text PDF

Ions attributed to lipids and phospholipids are directly observed by desorption from whole bacteria using intact cell (IC) matrix-assisted laser desorption-ionization (MALDI) Fourier transform mass spectrometry (FTMS). Saccharomyces cerevisiae are grown in rich media broth, concentrated, and applied directly to the MALDI surface without lysis or chemical treatment. FTMS of MALDI ions gives excellent signal to noise ratios with typical resolving powers of 90,000 and mass precision better than 0.

View Article and Find Full Text PDF

In the present paper, results demonstrating the significant advantages of matrix-assisted laser desorption/ionization (MALDI) analysis of whole cell samples of bacteria grown on double isotopically-depleted (13C and 15N) media are presented. It is shown that several advantages accrue for MALDI with a 9.4 T Fourier transform mass spectrometer (FTMS).

View Article and Find Full Text PDF

Recently, it has been demonstrated that bacteria can be characterized using whole cells and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, identification of specific bacterial proteins usually requires analysis of cellular fractions or purified extracts. Here, the first application of Fourier transform mass spectrometry (FTMS) to analysis of bacterial proteins directly from whole cells is reported.

View Article and Find Full Text PDF