The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion.
View Article and Find Full Text PDFIn planar cell polarity (PCP) signaling, distinct molecular subcomplexes segregate to opposite sides of each cell, where they interact across intercellular junctions to form asymmetric clusters. Although proximal-distal asymmetry within PCP clusters is the defining feature of PCP signaling, the mechanism by which this asymmetry develops remains unclear. Here, we developed a method to count the number of monomers of core PCP proteins within individual clusters in live animals and used it to infer the underlying molecular dynamics of cluster assembly and polarization.
View Article and Find Full Text PDFAutomated image quantification workflows have dramatically improved over the past decade, enriching image analysis and enhancing the ability to achieve statistical power. These analyses have proved especially useful for studies in organisms such as Drosophila melanogaster, where it is relatively simple to obtain high sample numbers for downstream analyses. However, the developing wing, an intensively utilized structure in developmental biology, has eluded efficient cell counting workflows due to its highly dense cellular population.
View Article and Find Full Text PDFEMBO Rep
December 2023
Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components.
View Article and Find Full Text PDFPlanar Cell Polarity (PCP) signaling polarizes epithelial cells in a plane orthogonal to their apical-basal axis. A core PCP signaling module segregates two distinct molecular subcomplexes to opposite sides of cells and coordinates the direction of polarization between neighboring cells. Homodimers of the atypical cadherin Flamingo are thought to scaffold these subcomplexes and are required for intercellular polarity signaling.
View Article and Find Full Text PDFThe growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion.
View Article and Find Full Text PDFbioRxiv
September 2023
PCP signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components.
View Article and Find Full Text PDFConvergent extension (CE) is a fundamental morphogenetic process where oriented cell behaviors lead to polarized extension of diverse tissues. In vertebrates, regulation of CE requires both non-canonical Wnt, its co-receptor Ror, and "core members" of the planar cell polarity (PCP) pathway. PCP was originally identified as a mechanism to coordinate the cellular polarity in the plane of static epithelium, where core proteins Frizzled (Fz)/ Dishevelled (Dvl) and Van Gogh-like (Vangl)/ Prickel (Pk) partition to opposing cell cortex.
View Article and Find Full Text PDFMulticiliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling.
View Article and Find Full Text PDFAutomated image quantification workflows have dramatically improved over the past decade, enriching image analysis and enhancing the ability to achieve statistical power. These analyses have proved especially useful for studies in organisms such as , where it is relatively simple to obtain high sample numbers for downstream analyses. However, the developing wing, an intensively utilized structure in developmental biology, has eluded efficient cell counting workflows due to its highly dense cellular population.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2023
Multiciliated cell loss is a hallmark of airway epithelial remodeling in chronic inflammatory airway diseases including cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease. It disrupts mucociliary clearance, which fuels disease progression. Effective clearance requires an optimal proportion of multiciliated and secretory cells.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2022
Planar cell polarity (PCP) signaling polarizes cells within the plane of an epithelium. In the airways, planar cell polarity signaling orients the directional beating of motile cilia required for effective mucociliary clearance. The planar cell polarity signaling mechanism is best understood from work in , where it has been shown to both coordinate the axis of polarity between cells and to direct the morphological manifestations of polarization within cells.
View Article and Find Full Text PDFRecent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification.
View Article and Find Full Text PDFPlanar cell polarity (PCP) signaling regulates several polarization events during development of ommatidia in the Drosophila eye, including directing chirality by polarizing a cell fate choice and determining the direction and extent of ommatidial rotation. The pksple isoform of the PCP protein Prickle is known to participate in the R3/R4 cell fate decision, but the control of other polarization events and the potential contributions of the three Pk isoforms have not been clarified. Here, by characterizing expression and subcellular localization of individual isoforms together with re-analyzing isoform specific phenotypes, we show that the R3/R4 fate decision, its coordination with rotation direction, and completion of rotation to a final ±90° rotation angle are separable polarization decisions with distinct Pk isoform requirements and contributions.
View Article and Find Full Text PDFDendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons. Nucleation sites concentrate at dendrite branch points, but how they localize is not known. Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the core nucleation protein γTubulin (γTub).
View Article and Find Full Text PDFSubcellular asymmetry directed by the planar cell polarity (PCP) signaling pathway orients numerous morphogenetic events in both invertebrates and vertebrates. Here, we describe a morphogenetic movement in which the intertwined socket and shaft cells of the anterior wing margin mechanosensory bristles undergo PCP-directed apical rotation, inducing twisting that results in a helical structure of defined chirality. We show that the Frizzled/Vang PCP signaling module coordinates polarity among and between bristles and surrounding cells to direct this rotation.
View Article and Find Full Text PDFCurr Opin Cell Biol
February 2020
The planar cell polarity (PCP) signaling pathway, principally understood from work in Drosophila, is now known to contribute to development in a broad swath of the animal kingdom, and its impairment leads to developmental malformations and diseases affecting humans. The 'core' mechanism underlying PCP signaling polarizes sheets of cells, aligning them in a head-to-tail fashion within the sheet. Cells use the resulting directional information to guide a wide variety of processes.
View Article and Find Full Text PDFThe VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKO glands display normal branching while Vangl2 and Vangl2 tissue exhibit several phenotypes.
View Article and Find Full Text PDFCycling cells maintain centriole number at precisely two per cell in part by limiting their duplication to S phase under the control of the cell cycle machinery. In contrast, postmitotic multiciliated cells (MCCs) uncouple centriole assembly from cell cycle progression and produce hundreds of centrioles in the absence of DNA replication to serve as basal bodies for motile cilia. Although some cell cycle regulators have previously been implicated in motile ciliogenesis, how the cell cycle machinery is employed to amplify centrioles is unclear.
View Article and Find Full Text PDFEpithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye.
View Article and Find Full Text PDFOriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
May 2017
The signaling pathways that sustain the disease process of chronic rhinosinusitis with nasal polyps (CRSwNP) remain poorly understood. We sought to determine the expression levels of Wnt signaling genes in CRSwNP and to study the role of the Wnt pathway in inflammation and epithelial remodeling in the nasal mucosa. Microarrays and real time-quantitative polymerase chain reaction comparing gene expression in matched NPs and inferior turbinates revealed that WNT2B, WNT3A, WNT4, WNT7A, WNT7B, and FZD2 were up-regulated and that FZD1, LRP5, LRP6, and WIF1 were down-regulated in NPs.
View Article and Find Full Text PDFMotile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis.
View Article and Find Full Text PDFThe role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens rather than workers is well characterized. A recent study demonstrated that this poorly understood complex nutrition drives strikingly similar phenotypic effects in Drosophila melanogaster, such as increased body size and reduced developmental time, making possible the use of D. melanogaster as a model system for the genetic analysis of the cellular mechanisms underlying RJ and caste differentiation.
View Article and Find Full Text PDFPlanar cell polarity (PCP) is controlled by a conserved pathway that regulates directional cell behavior. Here, we show that mutant mice harboring a newly described mutation termed Beetlejuice (Bj) in Prickle1 (Pk1), a PCP component, exhibit developmental phenotypes involving cell polarity defects, including skeletal, cochlear and congenital cardiac anomalies. Bj mutants die neonatally with cardiac outflow tract (OFT) malalignment.
View Article and Find Full Text PDF