Biosensors (Basel)
September 2021
Although in vitro sensors provide facile low-cost ways to screen for biologically active targets, their results may not accurately represent the molecular interactions in biological systems. Cell-based sensors have emerged as promising platforms to screen targets in biologically relevant environments. However, there are few examples where cell-based sensors have been practically applied for drug screening.
View Article and Find Full Text PDFCortisol, a stress hormone, plays key roles in mediating stress and anti-inflammatory responses. As abnormal cortisol levels can induce various adverse effects, screening cortisol and cortisol analogues is important for monitoring stress levels and for identifying drug candidates. A novel cell-based sensing system was adopted for rapid screening of cortisol and its functional analogues under complex cellular regulation.
View Article and Find Full Text PDFBiosensors are valuable tools for the rapid screening of biological targets with high sensitivity and specificity. It is important to screen biological events in their native context for pharmacological and toxicological applications. However, in vitro biosensors often require purified probes and targets for screening, thus providing limited information on the biological activities of targets in their native environment.
View Article and Find Full Text PDFSensors (Basel)
September 2019
Food intolerance is delayed adverse food reactions which follow consumption of specific foods. The underlying mechanisms are not well understood, but food intolerance is often considered as a type 2 hypersensitivity reaction mediated by immunoglobulin G (IgG) antibody. To understand the causes of food intolerance, it is important to investigate sensitization patterns of food-specific IgGs (sIgG) in relation to dietary patterns and physical conditions.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) with diverse physicochemical properties are reported to affect biological systems differently, but the relationship between the physicochemical properties of AuNPs and their biological effects is not clearly understood. Here, we aimed to elucidate the molecular origins of AuNP-induced cytotoxicity and their mechanisms, focusing on the surface charge and structural properties of modified AuNPs. We prepared a library of well-tailored AuNPs exhibiting various functional groups and surface charges.
View Article and Find Full Text PDFLive-cell-based biosensors have emerged as a useful tool for biotechnology and chemical biology. Genetically encoded sensor cells often use bimolecular fluorescence complementation or fluorescence resonance energy transfer to build a reporter unit that suffers from nonspecific signal activation at high concentrations. Here, we designed genetically encoded sensor cells that can report the presence of biologically active molecules via fluorescence-translocation based on split intein-mediated conditional protein trans-splicing (PTS) and conditional protein trans-cleavage (PTC) reactions.
View Article and Find Full Text PDF