Publications by authors named "Jayson Harshbarger"

The Functional ANnoTation Of the Mammalian genome (FANTOM) Consortium has continued to provide extensive resources in the pursuit of understanding the transcriptome, and transcriptional regulation, of mammalian genomes for the last 20 years. To share these resources with the research community, the FANTOM web-interfaces and databases are being regularly updated, enhanced and expanded with new data types. In recent years, the FANTOM Consortium's efforts have been mainly focused on creating new non-coding RNA datasets and resources.

View Article and Find Full Text PDF
Article Synopsis
  • Long noncoding RNAs (lncRNAs) make up most of transcripts in mammalian genomes, but their functions are still not well understood.
  • The FANTOM6 project systematically knocked down 285 lncRNAs in human dermal fibroblasts and analyzed changes in cell growth, shape, and gene expression using CAGE techniques.
  • This study provides a comprehensive lncRNA knockdown data set (over 1000 CAGE sequencing libraries) and reveals important findings about their roles and impact on various cellular pathways.
View Article and Find Full Text PDF

The authors regret that Luba M. Pardo was omitted in error from the author list of the original version of this Data Descriptor. This omission has now been corrected in the HTML and PDF versions.

View Article and Find Full Text PDF

The promoter landscape of several non-human model organisms is far from complete. As a part of FANTOM5 data collection, we generated 13 profiles of transcription initiation activities in dog and rat aortic smooth muscle cells, mesenchymal stem cells and hepatocytes by employing CAGE (Cap Analysis of Gene Expression) technology combined with single molecule sequencing. Our analyses show that the CAGE profiles recapitulate known transcription start sites (TSSs) consistently, in addition to uncover novel TSSs.

View Article and Find Full Text PDF

Rhesus macaque was the second non-human primate whose genome has been fully sequenced and is one of the most used model organisms to study human biology and disease, thanks to the close evolutionary relationship between the two species. But compared to human, where several previously unknown RNAs have been uncovered, the macaque transcriptome is less studied. Publicly available RNA expression resources for macaque are limited, even for brain, which is highly relevant to study human cognitive abilities.

View Article and Find Full Text PDF
Article Synopsis
  • The FANTOM5 project mapped transcription initiation events in human and mouse genomes with high precision using CAGE technology and single-molecule sequencing.
  • Over 3,000 diverse samples, including primary cells and tissues, were analyzed through a standardized process starting from RNA quality assessment to generating transcription initiation frequencies.
  • The analysis identified around 200,000 (human) and 150,000 (mouse) non-overlapping peaks, enabling the annotation of both known and novel promoters and providing insights into transcriptional regulation in different cellular states.
View Article and Find Full Text PDF

The FANTOM5 consortium described the promoter-level expression atlas of human and mouse by using CAGE (Cap Analysis of Gene Expression) with single molecule sequencing. In the original publications, GRCh37/hg19 and NCBI37/mm9 assemblies were used as the reference genomes of human and mouse respectively; later, the Genome Reference Consortium released newer genome assemblies GRCh38/hg38 and GRCm38/mm10. To increase the utility of the atlas in forthcoming researches, we reprocessed the data to make them available on the recent genome assemblies.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5' ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters.

View Article and Find Full Text PDF

Background: Differential gene expression (DGE) analysis is a technique to identify statistically significant differences in RNA abundance for genes or arbitrary features between different biological states. The result of a DGE test is typically further analyzed using statistical software, spreadsheets or custom ad hoc algorithms. We identified a need for a web-based system to share DGE statistical test results, and locate and identify genes in DGE statistical test results with a very low barrier of entry.

View Article and Find Full Text PDF

Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.

View Article and Find Full Text PDF

The Functional Annotation of the Mammalian Genome project (FANTOM5) mapped transcription start sites (TSSs) and measured their activities in a diverse range of biological samples. The FANTOM5 project generated a large data set; including detailed information about the profiled samples, the uncovered TSSs at high base-pair resolution on the genome, their transcriptional initiation activities, and further information of transcriptional regulation. Data sets to explore transcriptome in individual cellular states encoded in the mammalian genomes have been enriched by a series of additional analysis, based on the raw experimental data, along with the progress of the research activities.

View Article and Find Full Text PDF

Cell-to-cell communication across multiple cell types and tissues strictly governs proper functioning of metazoans and extensively relies on interactions between secreted ligands and cell-surface receptors. Herein, we present the first large-scale map of cell-to-cell communication between 144 human primary cell types. We reveal that most cells express tens to hundreds of ligands and receptors to create a highly connected signalling network through multiple ligand-receptor paths.

View Article and Find Full Text PDF

The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide.

View Article and Find Full Text PDF

The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.

View Article and Find Full Text PDF

Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses.

View Article and Find Full Text PDF

Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles.

View Article and Find Full Text PDF