Publications by authors named "Javier Florido"

Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease with high death rates that have remained substantially unaltered for decades. Therefore, new treatment approaches are urgently needed. Human papillomavirus-negative tumors harbor areas of terminally differentiated tissue that are characterized by cornification.

View Article and Find Full Text PDF

The circadian clock is a regulatory system, with a periodicity of approximately 24 h, which generates rhythmic changes in many physiological processes, including mitochondrial activity. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases such as cancer. Melatonin, whose production and secretion oscillates according to the light-dark cycle, is the principal regulator of clock gene expression.

View Article and Find Full Text PDF

The development of new anticancer therapies tends to be very slow. Although their impact on potential candidates is confirmed in preclinical studies, ∼95 % of these new therapies are not approved when tested in clinical trials. One of the main reasons for this is the lack of accurate preclinical models.

View Article and Find Full Text PDF
Article Synopsis
  • Head and neck squamous cell carcinoma (HNSCC) has a high mortality rate, prompting the need for effective treatments, such as melatonin, which has shown potential in cancer therapy.
  • This study investigates the optimal administration of melatonin, comparing subcutaneous and intratumoral injections in various tumor models, revealing that intratumoral injections significantly inhibit tumor growth and enhance the effects of cisplatin.
  • Findings indicate that intratumoral melatonin boosts reactive oxygen species production and apoptosis while reducing tumor migration and metastasis, highlighting its promise for future clinical applications in cancer treatment.
View Article and Find Full Text PDF

The circadian clock is a regulatory system, with a periodicity of approximately 24 h, that generates rhythmic changes in many physiological processes. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases, including cancer. In this context, tumor cells have an altered circadian machinery compared to normal cells, which deregulates the cell cycle, repair mechanisms, energy metabolism and other processes.

View Article and Find Full Text PDF

Background: New concepts for a more effective anti-cancer therapy are urgently needed. Experimental flaws represent a major counter player of this development and lead to inaccurate and unreproducible data as well as unsuccessful translation of research approaches into clinics. In a previous study we have created epithelial cell cultures from head and neck squamous cell carcinoma (HNSCC) tissue.

View Article and Find Full Text PDF

The development of type 2 diabetes mellitus (T2DM) vascular complications (VCs) is associated with oxidative stress and chronic inflammation and can result in endothelial dysfunctions. Circulating microRNAs play an important role in epigenetic regulation of the etiology of T2DM. We studied 30 healthy volunteers, 26 T2DM patients with no complications, and 26 T2DM patients with VCs, to look for new biomarkers indicating a risk of developing VCs in T2DM patients.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. In this context, tumor cells have an altered redox balance compared to normal cells, which can be targeted as an antitumoral therapy by ROS levels and by decreasing the capacity of the antioxidant system, leading to programmed cell death. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects.

View Article and Find Full Text PDF

The oncostatic effects of melatonin correlate with increased reactive oxygen species (ROS) levels, but how melatonin induces this ROS generation is unknown. In the present study, we aimed to elucidate the two seemingly opposing actions of melatonin regarding its relationship with free radicals. We analyzed the effects of melatonin on head and neck squamous cell carcinoma cell lines (Cal-27 and SCC-9), which were treated with 0.

View Article and Find Full Text PDF

Metabolic reprogramming, which is characteristic of cancer cells that rapidly adapt to the hypoxic microenvironment and is crucial for tumor growth and metastasis, is recognized as one of the major mechanisms underlying therapeutic resistance. Mitochondria, which are directly involved in metabolic reprogramming, are used to design novel mitochondria-targeted anticancer agents. Despite being targeted by melatonin, the functional role of mitochondria in melatonin's oncostatic activity remains unclear.

View Article and Find Full Text PDF

When exposed to hostile environments such as radiation, physical injuries, chemicals, pollution, and microorganisms, the skin requires protective chemical molecules and pathways. Melatonin, a highly conserved ancient molecule, plays a crucial role in the maintenance of skin. As human skin has functional melatonin receptors and also acts as a complete system that is capable of producing and regulating melatonin synthesis, melatonin is a promising candidate for its maintenance and protection.

View Article and Find Full Text PDF

Head and neck cancer is the sixth leading cancer by incidence worldwide. Unfortunately, drug resistance and relapse are the principal limitations of clinical oncology for many patients, and the failure of conventional treatments is an extremely demoralizing experience. It is therefore crucial to find new therapeutic targets and drugs to enhance the cytotoxic effects of conventional treatments without potentiating or offsetting the adverse effects.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) clearly involves activation of the Akt mammalian target of rapamycin (mTOR) signalling pathway. However, the effectiveness of treatment with the mTOR inhibitor rapamycin is often limited by chemoresistance. Melatonin suppresses neoplastic growth via different mechanisms in a variety of tumours.

View Article and Find Full Text PDF

The current treatment for cervico-facial cancer involves radio and/or chemotherapy. Unfortunately, cancer therapies can lead to local and systemic complications such as mucositis, which is the most common dose-dependent complication in the oral cavity and gastrointestinal tract. Mucositis can cause a considerably reduced quality of life in cancer patients already suffering from physical and psychological exhaustion.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are regarded as a promising therapeutic approach to protecting and restoring damaged neurons in neurodegenerative diseases (NDs) such as Parkinson's disease and Alzheimer's disease (PD and AD, respectively). However, new research suggests that NSC differentiation is required to make this strategy effective. Several studies have demonstrated that melatonin increases mature neuronal markers, which reflects NSC differentiation into neurons.

View Article and Find Full Text PDF

Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear.

View Article and Find Full Text PDF

Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants).

View Article and Find Full Text PDF

Motivation: Targeted enrichment sequencing by next-generation sequencing is a common approach to interrogate specific loci or the whole exome in the human genome. The efficiency and the lack of bias in the enrichment process need to be assessed as a quality control step before performing downstream analysis of the sequence data. Tools that can report on the sensitivity, specificity, uniformity and other enrichment-specific features are needed.

View Article and Find Full Text PDF

Motivation: Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar.

View Article and Find Full Text PDF

Multiple sequence alignments (MSAs) have become one of the most studied approaches in bioinformatics to perform other outstanding tasks such as structure prediction, biological function analysis or next-generation sequencing. However, current MSA algorithms do not always provide consistent solutions, since alignments become increasingly difficult when dealing with low similarity sequences. As widely known, these algorithms directly depend on specific features of the sequences, causing relevant influence on the alignment accuracy.

View Article and Find Full Text PDF