IEEE Trans Med Imaging
July 2025
Accurate segmentation of anatomical substructures within 3D curvilinear structures in medical imaging remains challenging due to their complex geometry and the scarcity of diverse, large-scale datasets for algorithm development and evaluation. In this paper, we use dendritic spine segmentation as a case study and address these challenges by introducing a novel Frenet-Serret Framebased Decomposition, which decomposes 3D curvilinear structures into a globally smooth continuous curve that captures the overall shape, and a cylindrical primitive that encodes local geometric properties. This approach leverages Frenet-Serret Frames and arc length parameterization to preserve essential geometric features while reducing representational complexity, facilitating data-efficient learning, improved segmentation accuracy, and generalization on 3D curvilinear structures.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
June 2025
While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2023
Automatic rib labeling and anatomical centerline extraction are common prerequisites for various clinical applications. Prior studies either use in-house datasets that are inaccessible to communities, or focus on rib segmentation that neglects the clinical significance of rib labeling. To address these issues, we extend our prior dataset (RibSeg) on the binary rib segmentation task to a comprehensive benchmark, named RibSeg v2, with 660 CT scans (15,466 individual ribs in total) and annotations manually inspected by experts for rib labeling and anatomical centerline extraction.
View Article and Find Full Text PDF