Publications by authors named "Jason D Foell"

Key Points: Mutations in the caveolae scaffolding protein, caveolin-3 (Cav3), have been linked to the long QT type 9 inherited arrhythmia syndrome (LQT9) and the cause of underlying action potential duration prolongation is incompletely understood. In the present study, we show that LQT9 Cav3 mutations, F97C and S141R, cause mutation-specific gain of function effects on Ca 1.2-encoded L-type Ca channels responsible for I and also cause loss of function effects on heterologously expressed K 4.

View Article and Find Full Text PDF

Background: The VALUE PVI study demonstrated that atrial fibrillation (AF) ablation procedures and electrophysiology laboratory (EP lab) occupancy times were reduced for the cryoballoon compared with focal radiofrequency (RF) ablation. However, the economic impact associated with the cryoballoon procedure for hospitals has not been determined.

Objective: Assess the economic value associated with shorter AF ablation procedure times based on VALUE PVI data.

View Article and Find Full Text PDF

Background: Long-term clinical outcomes for atrial fibrillation ablation depend on the creation of durable transmural lesions during pulmonary vein isolation and on substrate modification. Focal conventional radiofrequency (RF) ablation studies have demonstrated that tissue temperature and power are important factors for lesion formation. However, the impact and predictability of temperature and power on contiguous, transmural lesion formation with a phased RF system has not been described.

View Article and Find Full Text PDF

L-type Ca(2+) channels (LTCCs) play a critical role in Ca(2+)-dependent signaling processes in a variety of cell types. The number of functional LTCCs at the plasma membrane strongly influences the strength and duration of Ca(2+) signals. Recent studies demonstrated that endosomal trafficking provides a mechanism for dynamic changes in LTCC surface membrane density.

View Article and Find Full Text PDF

Targeting of ion channels to caveolae, a subset of lipid rafts, allow cells to respond efficiently to extracellular signals. Hyperpolarization-activated cyclic nucleotide-gated channel (HCN) 4 is a major subunit for the cardiac pacemaker. Caveolin-3 (Cav3), abundantly expressed in muscle cells, is responsible for forming caveolae.

View Article and Find Full Text PDF

The pro-arrhythmic Long QT syndrome (LQT) is linked to 10 different genes (LQT1-10). Approximately 40% of genotype-positive LQT patients have LQT2, which is characterized by mutations in the human ether-a-go-go related gene (hERG). hERG encodes the voltage-gated K(+) channel alpha-subunits that form the pore of the rapidly activating delayed rectifier K(+) current in the heart.

View Article and Find Full Text PDF

The localization of ion channels to specific membrane microdomains can impact the functional properties of channels and their role in cellular physiology. We determined the membrane localization of human Kv11.1 (hERG1) alpha-subunit protein, which underlies the rapidly activating, delayed rectifier K(+) current (I(Kr)) in the heart.

View Article and Find Full Text PDF

Background: Congenital long-QT syndrome (LQTS) is a primary arrhythmogenic syndrome stemming from perturbed cardiac repolarization. LQTS, which affects approximately 1 in 3000 persons, is 1 of the most common causes of autopsy-negative sudden death in the young. Since the sentinel discovery of cardiac channel gene mutations in LQTS in 1995, hundreds of mutations in 8 LQTS susceptibility genes have been identified.

View Article and Find Full Text PDF

L-type Ca(2+) channels play a critical role in regulating Ca(2+)-dependent signaling in cardiac myocytes, including excitation-contraction coupling; however, the subcellular localization of cardiac L-type Ca(2+) channels and their regulation are incompletely understood. Caveolae are specialized microdomains of the plasmalemma rich in signaling molecules and supported by the structural protein caveolin-3 in muscle. Here we demonstrate that a subpopulation of L-type Ca(2+) channels is localized to caveolae in ventricular myocytes as part of a macromolecular signaling complex necessary for beta(2)-adrenergic receptor (AR) regulation of I(Ca,L).

View Article and Find Full Text PDF

KCNH2 (hERG1) encodes the alpha-subunit proteins for the rapidly activating delayed rectifier K+ current (I(Kr)), a major K+ current for cardiac myocyte repolarization. In isolated myocytes I(Kr) frequently is small in amplitude or absent, yet KCNH2 channels and I(Kr) are targets for drug block or mutations to cause long QT syndrome. We hypothesized that KCNH2 channels and I(Kr) are uniquely sensitive to enzymatic damage.

View Article and Find Full Text PDF

Electrophysiological remodeling of ion channels in heart failure causes action potential prolongation and plays a role in arrhythmia mechanism. The importance of down-regulation of potassium currents is well-known, but a role for Na current (I(Na)) in heart failure is less well established. We studied I(Na) in heart failure ventricular cells from a canine pacing model of heart failure and also from explanted failing human hearts.

View Article and Find Full Text PDF

Recent studies have identified a growing diversity of splice variants of auxiliary Ca2+ channel Ca(v)beta subunits. The Ca(v)beta(1d) isoform encodes a putative protein composed of the amino-terminal half of the full-length Ca(v)beta(1) isoform and thus lacks the known high-affinity binding site that recognizes the Ca2+ channel alpha1-subunit, the alpha-binding pocket. The present study investigated whether the Ca(v)beta(1d) subunit is expressed at the protein level in heart, and whether it exhibits any of the functional properties typical of full-length Ca(v)beta subunits.

View Article and Find Full Text PDF

Multiple Ca2+ channel beta-subunit (Ca(v)beta) isoforms are known to differentially regulate the functional properties and membrane trafficking of high-voltage-activated Ca2+ channels, but the precise isoform expression pattern of Ca(v)beta subunits in ventricular muscle has not been fully characterized. Using sequence data from the Human Genome Project to define the intron/exon structure of the four known Ca(v)beta genes, we designed a systematic RT-PCR strategy to screen human and canine left ventricular myocardial samples for all known Ca(v)beta isoforms. A total of 18 different Ca(v)beta isoforms were detected in both canine and human ventricles including splice variants from all four Ca(v)beta genes.

View Article and Find Full Text PDF