Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future computing systems. However, designing devices with the desirable specification and performance for these applications is often found to be time-consuming and non-trivial. Here, we investigate the design and optimization of spin-orbit torque and spin transfer torque magnetic tunnel junction models as the probabilistic devices for true random number generation.
View Article and Find Full Text PDFPerpendicular magnetic tunnel junction (pMTJ)-based true-random number generators (RNGs) can consume orders of magnitude less energy per bit than CMOS pseudo-RNGs. Here, we numerically investigate with a macrospin Landau-Lifshitz-Gilbert equation solver the use of pMTJs driven by spin-orbit torque to directly sample numbers from arbitrary probability distributions with the help of a tunable probability tree. The tree operates by dynamically biasing sequences of pMTJ relaxation events, called 'coinflips', via an additional applied spin-transfer-torque current.
View Article and Find Full Text PDF