Publications by authors named "Janice B Lin"

The synthesis of a new molecule, SFIC-Cl, is reported, which features enhanced π-electron delocalization by spiroconjugation and narrowed bandgap by chlorination. SFIC-Cl is integrated into a single-crystal transistor (OFET) and organic light-emitting diode (OLED). The material demonstrates remarkable transport abilities across various solution-processed OFETs and retains efficient radiance in a near-infrared OLED emitting light at 700 nm.

View Article and Find Full Text PDF

Reaction pathways operative when pyridinophane -oxides are photoirradiated have been studied using time course analyses and careful isolation of photolabile intermediates with support from DFT calculations. Based on the data and the isolation of two previously unknown heterocyclophanes, we outline a unified mechanistic scheme that explains competing processes under varying photochemical conditions.

View Article and Find Full Text PDF

The synthesis of graphene nanoribbons (GNRs) that contain site-specifically substituted backbone heteroatoms is one of the essential goals that must be achieved in order to control the electronic properties of these next generation organic materials. We have exploited our recently reported solid-state topochemical polymerization/cyclization-aromatization strategy to convert the simple 1,4-bis(3-pyridyl)butadiynes into the fjord-edge nitrogen-doped graphene nanoribbon structures (fjord-edge N[8]GNRs). Structural assignments are confirmed by CP/MAS C NMR, Raman, and XPS spectroscopy.

View Article and Find Full Text PDF

Expanded helicenes are large, structurally flexible π-frameworks that can be viewed as building blocks for more complex chiral nanocarbons. Here we report a gram-scale synthesis of an alkyne-functionalized expanded [11]helicene and its single-step transformation into two structurally and functionally distinct types of macrocyclic derivatives: (1) a figure-eight dimer via alkyne metathesis (also gram scale) and (2) two arylene-bridged expanded helicenes via Zr-mediated, formal [2+2+] cycloadditions. The phenylene-bridged helicene displays a substantially higher enantiomerization barrier (22.

View Article and Find Full Text PDF

We report a computational study on the effect of side-chain substitution, heteroaromatic substitution and unique crystal packing on the charge transport and mobility of three double helicene molecules. These double helicene (DH) molecules, having curved π-conjugation, are structural hybrids of non-planar [6]helicene and planar tribenzo[b,n,pqr]perylene (TBP). We find that side-chain substitution has only a effect on intrinsic electronic properties in DHs but dramatically impacts the packing arrangement, morphologies and transport network, exhibited in calculated charge transport parameters.

View Article and Find Full Text PDF

We report a computational study of mesoscale morphology and charge-transport properties of radially π-conjugated cycloparaphenylenes ([ n]CPPs) of various ring sizes ( n = 5-12, where n is the number of repeating phenyl units). These molecules are considered structural constituents of fullerenes and carbon nanotubes. [ n]CPP molecules are nested in a unique fashion in the solid state.

View Article and Find Full Text PDF

We demonstrate a highly efficient thermal conversion of four differently substituted polydiacetylenes (PDAs 1 and 2a-c) into virtually indistinguishable N = 8 armchair graphene nanoribbons ([8]GNR). PDAs 1 and 2a-c are themselves easily accessed through photochemically initiated topochemical polymerization of diynes 3 and 4a-c in the crystal. The clean, quantitative transformation of PDAs 1 and 2a-c into [8]GNR occurs via a series of Hopf pericyclic reactions, followed by aromatization reactions of the annulated polycyclic aromatic intermediates, as well as homolytic bond fragmentation of the edge functional groups upon heating up to 600 °C under an inert atmosphere.

View Article and Find Full Text PDF

In order to understand the conformational behavior of organic components in organic electronic devices, we have computed the torsional potentials for a library of thiophene-based heterodimers. The accuracy and efficiencies of computational methods for these organic materials were benchmarked for 11 common density functionals with three Pople basis sets against a Focal Point Analysis (FPA) on a model oligothiophene 2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]-thiophene (BTTT) system. This study establishes a set of general trends in regards to conformational preferences, as well as planarization and rotational barriers for a library comprised of common fragments found in organic materials.

View Article and Find Full Text PDF

We report the design and synthesis of a new class of indole-based conjugated trimers. The targeted compounds are accessed from in situ generated, highly reactive indolyne intermediates using Pd-catalyzed cyclotrimerization reactions. By harnessing three indolyne isomers, six isomeric indole trimers are accessible, none of which have been previously synthesized.

View Article and Find Full Text PDF