Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions.
View Article and Find Full Text PDFThe biosynthesis of nanoparticles (NPs) has gained an overwhelming interest due to their biological applications. However, NPs synthesis by pigmented extreme halophiles remains underexplored. The NPs synthesis using pigmented halophiles is inexpensive and less toxic than other processes.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2022
Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially desirable enzymes of microbial origin are limited.
View Article and Find Full Text PDFThis study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes ( = 209) retrieved from public repositories. The open sea was significantly enriched with and . Meanwhile, coastal biosystems were dominated by and .
View Article and Find Full Text PDFScreening of halophiles with antimicrobial activity in saltpan soil samples from Nagapattinam district, Tamil Nadu, revealed isolate VE-2 as the most potent, identified as Bacillus firmus strain VE-2 through 16s rRNA gene sequencing. It had an optimum growth condition (OD 3.1) and antimicrobial protein (AMP) production (450 μg/mL) at 37 °C, pH 8, 25% NaCl, and 36 h incubation.
View Article and Find Full Text PDFMicrobial communities perform crucial biogeochemical cycles in distinct ecosystems. Halophilic microbial communities are enriched in the saline areas. Hence, haloarchaea have been primarily studied in salterns and marine biosystems with the aim to harness haloarcheal carotenoids biosynthesis.
View Article and Find Full Text PDF