Photoelectrochemical (PEC) devices offer a promising platform toward direct solar light harvesting and chemical storage through artificial photosynthesis. However, most prototypes employ wide bandgap semiconductors, moisture-sensitive inorganic light absorbers, or corrosive electrolytes. Here, the design and assembly of PEC devices based on an organic donor-acceptor bulk heterojunction (BHJ) using a carbon-based encapsulant are introduced, which demonstrate long-term H evolution and CO reduction in benign aqueous media.
View Article and Find Full Text PDFThe interfacing of nanostructured semiconductor photoelectrodes with redox proteins is an innovative approach to the development of artificial photosynthetic systems. In this paper, we have investigated the photoinduced electron-transfer reactions of zinc-substituted cytochrome c, ZnCyt-c, immobilized on mesoporous, nanocrystalline metal oxide electrodes. Efficient electron injection from the triplet state of ZnCyt-c is observed into TiO(2) electrodes (t(50%) approximately 100 micros) resulting in a long-lived charge-separated state (lifetime of up to 0.
View Article and Find Full Text PDF