Giant cell tumor of bone (GCTB) is an intermediate locally aggressive osteolytic tumor with low metastatic potential and a high recurrence rate. It comprises two main types of cells-neoplastic mononuclear stromal cells and osteoclast-like giant cells-which are responsible for the resorption of bone. In addition to surgery, which is the primary treatment of choice, adjuvant therapy is used to lower the risk of recurrence.
View Article and Find Full Text PDFPurpose: This retrospective study aims to show a real-life single-center experience with clinical management of relapsed pediatric ependymomas using results from comprehensive molecular profiling.
Methods: Eight relapsed ependymomas were tested by whole exome sequencing, RNA sequencing, phosphoproteomic arrays, array comparative genome hybridization, and immunohistochemistry staining for PD-L1 expression and treated with an individualized approach implementing targeted inhibitors, immunotherapy, antiangiogenic metronomic treatment, or other agents. Treatment efficacy was evaluated using progression-free survival (PFS), overall survival (OS), survival after relapse (SAR), and PFS ratios.
PDGFRA is crucial to tumorigenesis and frequently genomically altered in high-grade glioma (HGG). In a comprehensive dataset of pediatric HGG (n = 261), we detect PDGFRA mutations and/or amplifications in 15% of cases, suggesting PDGFRA as a therapeutic target. We reveal that the PDGFRA/KIT inhibitor avapritinib shows (1) selectivity for PDGFRA inhibition, (2) distinct patterns of subcellular effects, (3) in vitro and in vivo activity in patient-derived HGG models, and (4) effective blood-brain barrier penetration in mice and humans.
View Article and Find Full Text PDFPurpose: Pediatric sarcomas are bone and soft tissue tumors that often exhibit high metastatic potential and refractory stem-like phenotypes, resulting in poor outcomes. Aggressive sarcomas frequently harbor a disrupted p53 pathway. However, whether pediatric sarcoma stemness is associated with abrogated p53 function and might be attenuated via p53 reactivation remains unclear.
View Article and Find Full Text PDFBackground And Objectives: Curettage is the removal of a tumor from the bone while preserving the surrounding healthy cortical bone, and is associated with higher rates of local recurrence. To lower these rates, curettage should be combined with local adjuvants, although their use is associated with damage to nearby healthy bone.
Objective: The purpose of this analysis is to determine the effect of local adjuvants on cortical porcine bone by using micro-computed tomography (micro-CT) along with histological and mechanical examination.
Tyrosine kinase inhibitors (TKIs) are frequently used in combined therapy to enhance treatment efficacy and overcome drug resistance. The present study analyzed the effects of three inhibitors, sunitinib, gefitinib, and lapatinib, combined with iron-chelating agents, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) or di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). Simultaneous administration of the drugs consistently resulted in synergistic and/or additive activities against the cell lines derived from the most frequent types of pediatric solid tumors.
View Article and Find Full Text PDFAnticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors.
View Article and Find Full Text PDFAdrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3A human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists.
View Article and Find Full Text PDFDespite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma.
View Article and Find Full Text PDFCombining low-dose chemotherapies is a strategy for designing less toxic and more potent childhood cancer treatments. We examined the effects of combining the novel thiosemicarbazones, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), or its analog, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), with the standard chemotherapies, celecoxib (CX), etoposide (ETO), or temozolomide (TMZ). These combinations were analyzed for synergism to inhibit proliferation of three pediatric tumor cell-types, namely osteosarcoma (Saos-2), medulloblastoma (Daoy) and neuroblastoma (SH-SY5Y).
View Article and Find Full Text PDFTyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively.
View Article and Find Full Text PDFNANOG is a transcription factor involved in the regulation of pluripotency and stemness. The functional paralog of NANOG, NANOGP8, differs from NANOG in only three amino acids and exhibits similar reprogramming activity. Given the transcriptional regulatory role played by NANOG, the nuclear localization of NANOG/NANOGP8 has primarily been considered to date.
View Article and Find Full Text PDFFront Oncol
February 2020
Unlabelled: In order to identify reasons for treatment failures when using targeted therapies, we have analyzed the comprehensive molecular profiles of three relapsed, poor-prognosis Burkitt lymphoma cases. All three cases had resembling clinical presentation and histology and all three patients relapsed, but their outcomes differed significantly. The samples of their tumor tissue were analyzed using whole-exome sequencing, gene expression profiling, phosphoproteomic assays, and single-cell phosphoflow cytometry.
View Article and Find Full Text PDFSerial xenotransplantation of sorted cancer cells in immunodeficient mice remains the most complex test of cancer stem cell (CSC) phenotype. However, we have demonstrated in various sarcomas that putative CSC surface markers fail to identify CSCs, thereby impeding the isolation of CSCs for subsequent analyses. Here, we utilized serial xenotransplantation of unsorted rhabdomyosarcoma cells in NOD/SCID gamma (NSG) mice as a proof-of-principle platform to investigate the molecular signature of CSCs.
View Article and Find Full Text PDFThe specific targeting of signal transduction by low-molecular-weight inhibitors or monoclonal antibodies represents a very promising personalized treatment strategy in pediatric oncology. In this study, we present the successful and clinically relevant use of commercially available phospho-protein arrays for analyses of the phosphorylation profiles of a broad spectrum of receptor tyrosine kinases and their downstream signaling proteins in tumor tissue samples. Although these arrays were made for research purposes on human biological samples, they have already been used by several authors to profile various tumor types.
View Article and Find Full Text PDFThe individualization of treatment is attractive, especially in children with high-risk cancer. In such a rare and very heterogeneous group of diseases, large population-based clinical randomized trials are not feasible without international collaboration. We therefore propose comparative patient series analysis in a real-life scenario.
View Article and Find Full Text PDFInfantile myofibromatosis represents one of the most common proliferative fibrous tumors of infancy and childhood. More effective treatment is needed for drug-resistant patients, and targeted therapy using specific protein kinase inhibitors could be a promising strategy. To date, several studies have confirmed a connection between the p.
View Article and Find Full Text PDFBackground: Infantile myofibromatosis belongs to a family of soft tissue tumors. The majority of these tumors have benign behavior but resistant and malignant courses are known, namely in tumors with visceral involvement. The standard of care is surgical resection.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
March 2017
Background: For decades, methotrexate (MTX; amethopterin) has been known as an antifolate inhibitor of dihydrofolate reductase (DHFR), and it is widely used for the treatment of various malignancies and autoimmune diseases. Although the inclusion of MTX in various therapeutic regimens is based on its ability to inhibit DHFR and consequently to suppress the synthesis of pyrimidine and purine precursors, recent studies have shown that MTX is also able to target other intracellular pathways that are independent of folate metabolism.
Scope Of Review: The main aim of this review is to summarize the most important, up-to-date findings of studies regarding the non-DHFR-mediated mechanisms of MTX action.
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated.
View Article and Find Full Text PDFBackground: Methotrexate is an important chemotherapeutic drug widely known as an inhibitor of dihydrofolate reductase (DHFR) which inhibits the reduction of folic acid. DHFR-mediated effects are apparently responsible for its primary antineoplastic action. However, other non-DHFR-mediated effects of methotrexate have been recently discovered, which might be very useful in the development of new strategies for the treatment of pediatric malignancies.
View Article and Find Full Text PDFThe three most frequent pediatric sarcomas, i.e., Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma, were examined in this study: three cell lines derived from three primary tumor samples were analyzed from each of these tumor types.
View Article and Find Full Text PDF