Single-particle (digital) immunoassays offer significantly lower limits of detection (LODs) than traditional immunoassays, making them suitable for the detection of low-abundance biomarkers. The most common approach for digital detection is based on counting individual labels. Here, we introduce a novel dot-blot particle-linked immunosorbent assay (PLISA) with digital readout utilizing laser ablation (LA) of photon upconversion nanoparticle (UCNP) labels from the nitrocellulose substrate.
View Article and Find Full Text PDFThe anti-Stokes emission of photon upconversion nanoparticles (UCNPs) facilitates their use as labels for ultrasensitive detection in biological samples as infrared excitation does not induce autofluorescence at visible wavelengths. The detection of extremely low-abundance analytes, however, remains challenging as it is impossible to completely avoid nonspecific binding of label conjugates. To overcome this limitation, we developed a novel hybridization complex transfer technique using UCNP labels to detect short nucleic acids directly without target amplification.
View Article and Find Full Text PDFDot-blot immunoassays are widely used for the user-friendly detection of clinical biomarkers. However, the majority of dot-blot assays have only limited sensitivity and are only used for qualitative or semiquantitative analysis. To overcome this limitation, we have employed labels based on photon-upconversion nanoparticles (UCNPs) that exhibit anti-Stokes luminescence and can be detected without optical background interference.
View Article and Find Full Text PDFAn electrochemical impedimetric biosensor for human serum albumin (HSA) determination is proposed. The biosensor is based on water-phase assembled nanocomposites made of 2D WS nanoflakes and Au nanoparticles (AuNPs). The WS has been produced using a liquid-phase exfoliation strategy assisted by sodium cholate, obtaining a water-stable suspension that allowed the straightforward decoration with AuNPs directly in the aqueous phase.
View Article and Find Full Text PDF