Publications by authors named "Jakub Gruszczyk"

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.

View Article and Find Full Text PDF

More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia. P. vivax preferentially invades reticulocytes (immature red blood cells).

View Article and Find Full Text PDF

Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior.

View Article and Find Full Text PDF

Background: The Plasmodium vivax Reticulocyte Binding Protein (PvRBP) family is involved in red blood cell recognition and members of this family are potential targets for antibodies that may block P. vivax invasion. To date, the acquisition of immunity against PvRBPs in low malaria transmission settings and in a broad age group of exposed individuals has not been investigated.

View Article and Find Full Text PDF

Plasmodium vivax parasites preferentially invade reticulocyte cells in a multistep process that is still poorly understood. In this study, we used ex vivo invasion assays and population genetic analyses to investigate the involvement of complement receptor 1 (CR1) in P. vivax invasion.

View Article and Find Full Text PDF
Article Synopsis
  • Wild-living African apes carry parasites closely related to those that cause malaria in humans, indicating that the origin of human malaria is linked to Africa.
  • Genome analysis of ape strains reveals a close genetic similarity to human strains, with only a small percentage of differences, but human strains show significantly less diversity.
  • Research suggests that human malaria parasites have a history of population bottlenecks and rapid expansion after leaving Africa, along with no significant barriers preventing infection across species.
View Article and Find Full Text PDF

Plasmodium vivax is the most widely distributed malaria parasite that infects humans. P. vivax invades reticulocytes exclusively, and successful entry depends on specific interactions between the P.

View Article and Find Full Text PDF

shows a strict host tropism for reticulocytes. We identified transferrin receptor 1 (TfR1) as the receptor for reticulocyte-binding protein 2b (PvRBP2b). We determined the structure of the N-terminal domain of PvRBP2b involved in red blood cell binding, elucidating the molecular basis for TfR1 recognition.

View Article and Find Full Text PDF

The study of antigenic targets of naturally-acquired immunity is essential to identify and prioritize antigens for further functional characterization. We measured total IgG antibodies to 38 antigens, investigating their relationship with prospective risk of malaria in a cohort of 1-3 years old Papua New Guinean children. Using simulated annealing algorithms, the potential protective efficacy of antibodies to multiple antigen-combinations, and the antibody thresholds associated with protection were investigated for the first time.

View Article and Find Full Text PDF

Background: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P.

View Article and Find Full Text PDF

Background: Major gaps in our understanding of Plasmodium vivax biology and the acquisition of immunity to this parasite hinder vaccine development. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how Plasmodium vivax, a malaria parasite, enters human red blood cells is crucial for creating strategies to prevent infection during the blood stage.
  • The research reveals the first high-resolution crystal structure of the erythrocyte-binding domain from the reticulocyte-binding protein PvRBP2a, showing its unique structural features compared to similar proteins from Plasmodium falciparum.
  • By identifying key amino acids and their roles in red blood cell binding, this study lays the groundwork for developing new tools to inhibit P. vivax infections.
View Article and Find Full Text PDF

Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family.

View Article and Find Full Text PDF

A particular class of tyrosine-kinases sharing no structural similarity with eukaryotic tyrosine-kinases has been evidenced in a large array of bacterial species. These bacterial tyrosine-kinases are able to autophosphorylate on a C-terminal tyrosine-rich motif. Their autophosphorylation has been shown to play a crucial role in the biosynthesis or export of capsular polysaccharide.

View Article and Find Full Text PDF

Bacterial UDP-sugar dehydrogenases are part of the biosynthesis pathway of extracellular polysaccharides. These compounds act as important virulence factors by protecting the cell from opsonophagocytosis and complement-mediated killing. In Staphylococcus aureus, the protein Cap5O catalyzes the oxidation of UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid.

View Article and Find Full Text PDF

Capsular polysaccharides are well-established virulence factors of pathogenic bacteria. Their biosynthesis and export are regulated within the transmembrane polysaccharide assembly machinery by the autophosphorylation of atypical tyrosine-kinases, named BY-kinases. However, the accurate functioning of these tyrosine-kinases remains unknown.

View Article and Find Full Text PDF

The DH-PH domain tandems of Dbl-homology guanine nucleotide exchange factors catalyze the exchange of GTP for GDP in Rho-family GTPases, and thus initiate a wide variety of cellular signaling cascades. Although several crystal structures of complexes of DH-PH tandems with cognate, nucleotide free Rho GTPases are known, they provide limited information about the dynamics of the complex and it is not clear how accurately they represent the structures in solution. We used a complementary combination of nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and hydrogen-deuterium exchange mass spectrometry (DXMS) to study the solution structure and dynamics of the DH-PH tandem of RhoA-specific exchange factor PDZRhoGEF, both in isolation and in complex with nucleotide free RhoA.

View Article and Find Full Text PDF