Publications by authors named "Jahed Ahmed"

Plant viruses represent a risk to agricultural production and as only a few treatments exist, it is urgent to identify resistance mechanisms and factors. In plant immunity, plasma membrane (PM)-localized proteins play an essential role in sensing the extracellular threat presented by bacteria, fungi, or herbivores. Viruses are intracellular pathogens and as such the role of the plant PM in detection and resistance against viruses is often overlooked.

View Article and Find Full Text PDF

Plant aquaporins (AQPs) facilitate the membrane diffusion of water and small solutes, including hydrogen peroxide (H O ) and, possibly, cations, essential signalling molecules in many physiological processes. While the determination of the channel activity generally depends on heterologous expression of AQPs in Xenopus oocytes or yeast cells, we established a genetic tool to determine whether they facilitate the diffusion of H O through the plasma membrane in living plant cells. We designed genetic constructs to co-express the fluorescent H O sensor HyPer and AQPs, with expression controlled by a heat shock-inducible promoter in Nicotiana tabacum BY-2 suspension cells.

View Article and Find Full Text PDF

Cellulases are used in textile, pulp and paper, brewery and wine, sugars, and ethanol industries. Four fungal isolates obtained from organic municipal solid wastes (OMSW) were selected based on their cellulolytic activity on carboxymethyl cellulose (CMC) agar medium. Based on the internal transcribed spacer (ITS) sequence of the ribosomal DNA, the four cellulolytic isolates were identified as Aspergillus fumigatus AKAL1, Aspergillus oryzae AKAL4, Aspergillus flavus AKAL8, and Aspergillus flavus AKAL9.

View Article and Find Full Text PDF

To evaluate antimicrobial activity of extracellular metabolites (EMs) of endophytic fungal isolates (EFIs) from . EFIs were identified by internal transcribed spacer (ITS) sequencing. Antimicrobial activity, and minimum inhibitor concentration (MIC) and minimum bactericidal concentration (MBC) were determined using agar diffusion and microdilution method, respectively.

View Article and Find Full Text PDF

Aquaporins (AQPs) are membrane-spanning channel proteins with exciting applications for plant engineering and industrial applications. Translational outcomes will be improved by better understanding the extensive diversity of plant AQPs. However, gene families are complex, making exhaustive identification difficult, especially in polyploid species.

View Article and Find Full Text PDF

Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity.

View Article and Find Full Text PDF

Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the membrane diffusion of water and other small solutes. is an important model plant, and its allotetraploid genome has recently been released, providing us with the opportunity to analyze the gene family and its evolution. A total of 88 full-length genes were identified in the genome, and the encoding proteins were assigned into five subfamilies: 34 plasma membrane intrinsic proteins (PIPs); 27 tonoplast intrinsic proteins (TIPs); 20 nodulin26-like intrinsic proteins (NIPs); 3 small basic intrinsic proteins (SIPs); 4 uncharacterized X intrinsic proteins (XIPs), including two splice variants.

View Article and Find Full Text PDF

Proteolytic bacteria isolated from municipal solid wastes (MSW) were identified as A3 and A2 based on 16S rDNA sequencing. Protease produced through fermentation of organic MSW by these bacteria under some optimized physicochemical parameters was partially purified and characterized. The estimated molecular mass of the partially purified protease from and was approximately 25 and 38 kDa, respectively.

View Article and Find Full Text PDF

Alkaline proteases have applications in numerous industries. In this study, we have isolated and screened proteolytic bacteria from poultry wastes mixed soil and identified two bacterial isolates as AKAL7 and AKAL11 based on 16S rDNA sequencing. Maximum level of protease production was achieved after 24 h of fermentation in a basal medium.

View Article and Find Full Text PDF

Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions.

View Article and Find Full Text PDF

Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs.

View Article and Find Full Text PDF

Single-nucleotide polymorphisms (SNPs) associated with complex disorders can create, destroy, or modify protein coding sites. Single amino acid substitutions in the insulin receptor (INSR) are the most common forms of genetic variations that account for various diseases like Donohue syndrome or Leprechaunism, Rabson-Mendenhall syndrome, and type A insulin resistance. We analyzed the deleterious nonsynonymous SNPs (nsSNPs) in gene based on different computational methods.

View Article and Find Full Text PDF

Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon.

View Article and Find Full Text PDF