Class Incremental Learning (CIL) constitutes a pivotal subfield within continual learning, aimed at enabling models to progressively learn new classification tasks while retaining knowledge obtained from prior tasks. Although previous studies have predominantly focused on backward compatible approaches to mitigate catastrophic forgetting, recent investigations have introduced forward compatible methods to enhance performance on novel tasks and complement existing backward compatible methods. In this study, we introduce effective-Rank based Feature Richness enhancement (RFR) method that is designed for improving forward compatibility.
View Article and Find Full Text PDFNeural Netw
November 2024
Contrastive learning has emerged as a cornerstone in unsupervised representation learning. Its primary paradigm involves an instance discrimination task utilizing InfoNCE loss where the loss has been proven to be a form of mutual information. Consequently, it has become a common practice to analyze contrastive learning using mutual information as a measure.
View Article and Find Full Text PDF