Publications by authors named "Jae Hong Im"

Alzheimer's disease (AD) remains an incurable neurodegenerative condition that poses a threat to humanity. Immune signaling in the brain, particularly the NLR family pyrin domain containing 3 (NLRP3), is currently targeted for AD treatment. Based on the crystal structure of the NACHT domain of NLRP3 and its renowned inhibitor MCC950, we designed and synthesized nineteen sulfonylurea compounds and evaluated their capacity to inhibit caspase-1 and interleukin-1β (IL-1β).

View Article and Find Full Text PDF

The neurofibrillary tangles (NFTs) formed from hyperphosphorylation of tau protein are closely associated with Alzheimer's disease (AD). O-GlcNAcylation of tau can negatively regulate hyperphosphorylation and the O-GlcNAcase (OGA) catalyzes the removal of O-linked β-N-acetylglucosamine (O-GlcNAc) from tau protein. Therefore, preventing tau hyperphosphorylation by increasing the levels of tau O-GlcNAcylation via OGA inhibitors could be a promising approach.

View Article and Find Full Text PDF

Regulation of the programming of tumour-associated macrophages (TAMs) controls tumour growth and anti-tumour immunity. We examined the role of FGF2 in that regulation. Tumours in mice genetically deficient in low-molecular weight FGF2 (FGF2) regress dependent on T cells.

View Article and Find Full Text PDF

Emerging evidence suggests a role for radiation in eliciting anti-tumour immunity. We aimed to investigate the role of macrophages in modulating the immune response to radiation. Irradiation to murine tumours generated from colorectal (MC38) and pancreatic (KPC) cell lines induced colony-stimulating factor 1 (CSF-1).

View Article and Find Full Text PDF

Platelets and coagulation have long been known to be essential for metastasis in experimental models. In order to study the interactions between tumor cells, platelets and endothelium, we have adapted methods used in coagulation research for the isolation of platelets and their reintroduction into mice. Anti-coagulated murine blood served as the source for platelets.

View Article and Find Full Text PDF

RhoC is a member of the Rho GTPase family that is implicated in cancer progression by stimulating cancer cell invasiveness. Here we report that RhoC regulates the interaction of cancer cells with vascular endothelial cells (ECs), a crucial step in the metastatic process. RhoC depletion by RNAi reduces PC3 prostate cancer cell adhesion to ECs, intercalation between ECs as well as transendothelial migration in vitro.

View Article and Find Full Text PDF

Tumor-infiltrating immune cells play important roles in metastasis. We have recently revealed the recruitment of a specific myeloid cell subset (CD11b/Gr1) to hepatic metastases. Such a recruitment relies on CCL2/CCR2 signaling and acts to sustain metastatic growth.

View Article and Find Full Text PDF

Cancer cells interact with endothelial cells during the process of metastatic spreading. Here, we use a small interfering RNA screen targeting Rho GTPases in cancer cells to identify Cdc42 as a critical regulator of cancer cell-endothelial cell interactions and transendothelial migration. We find that Cdc42 regulates β1 integrin expression at the transcriptional level via the transcription factor serum response factor (SRF).

View Article and Find Full Text PDF

Unlabelled: Liver metastasis from colorectal cancer is a leading cause of cancer mortality. Myeloid cells play pivotal roles in the metastatic process, but their prometastatic functions in liver metastasis remain incompletely understood. To investigate their role, we simulated liver metastasis in C57BL/6 mice through intrasplenic inoculation of MC38 colon carcinoma cells.

View Article and Find Full Text PDF

Suppression of neo-angiogenesis is a clinically used anti-tumor strategy with new targets such as angiopoietin-2 (Ang2) being proposed. However, the functions of Ang2 in vascular remodeling, inflammation and tumor growth are not consistent. We examined effect of depletion of host Ang2 on liver colony formation using Ang2 deficient (Ang2(-/-)) mice.

View Article and Find Full Text PDF

Tissue factor (TF) expression by tumor cells correlates with metastasis clinically and supports metastasis in experimental settings. However, the precise pathways coupling TF to malignancy remain incompletely defined. Here, we show that clot formation by TF indirectly enhances tumor cell survival after arrest in the lung, during experimental lung metastasis, by recruiting macrophages characterized by CD11b, CD68, F4/80, and CX(3)CR1 (but not CD11c) expression.

View Article and Find Full Text PDF

The aberrant vascular architecture of solid tumors results in hypoxia that limits the efficacy of radiotherapy. Vascular normalization using antiangiogenic agents has been proposed as a means to improve radiation therapy by enhancing tumor oxygenation, but only short-lived effects for this strategy have been reported so far. Here, we show that NVP-BEZ235, a dual inhibitor of phosphoinositide-3-kinase (PI3K) and mTOR, can improve tumor oxygenation and vascular structure over a prolonged period that achieves the aim of effective vascular normalization.

View Article and Find Full Text PDF

Background: The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown.

Methodology/principal Findings: Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin.

View Article and Find Full Text PDF

Many inhibitors of the epidermal growth factor receptor (EGFR)-RAS-phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway are in clinical use or under development for cancer therapy. Here, we show that treatment of mice bearing human tumor xenografts with inhibitors that block EGFR, RAS, PI3K, or AKT resulted in prolonged and durable enhancement of tumor vascular flow, perfusion, and decreased tumor hypoxia. The vessels in the treated tumors had decreased tortuosity and increased internodal length accounting for the functional alterations.

View Article and Find Full Text PDF

Coagulation has long been known to facilitate metastasis. To pinpoint the steps where coagulation might play a role in the metastasis, we used three-dimensional visualization of direct infusion of fluorescence labeled antibody to observe the interaction of tumor cells with platelets and fibrinogen in isolated lung preparations. Tumor cells arrested in the pulmonary vasculature were associated with a clot composed of both platelets and fibrin(ogen).

View Article and Find Full Text PDF

Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component.

View Article and Find Full Text PDF

Three mannosylerythritol lipids (MEL-A, -B, and -C), yeast glycolipid biosurfactants, were independently attached to poly (2-hydroxyethyl methacrylate) beads (PHEMA), and the three obtained MEL-PHEMA composites were examined for their binding affinity to human immunoglobulin G (HIgG). Of the three composites, the composite bearing MEL-A exhibited the highest binding capacity for HIgG. The binding amount of HIgG increased with increased applied concentration, reaching 106 mg HIgG (per g of composite), with a binding yield of 81%.

View Article and Find Full Text PDF