Int J Biol Macromol
September 2025
Keratins represent an important class of sulfur-rich structural proteins. In this study, the pressure response of α-keratin, extracted from sheep wool, was investigated using Raman spectroscopy up to 4 GPa. A non-polar liquid (a Fluorinert™ FC70/77 mixture) served as the Pressure Transmitting Medium (PTM) in a Diamond Anvil Cell (DAC).
View Article and Find Full Text PDFThe pressure response of crystalline 9,9'-spirobifluorene up to 8 GPa was studied by means of Raman spectroscopy using a diamond anvil cell as a pressure chamber. With increasing pressure, the observed Raman peaks shifted to higher frequencies, reflecting the bond hardening upon volume reduction, which was much more pronounced for the initially weaker intermolecular interactions than for the stronger intramolecular covalent bonds. The significant changes in the Raman spectrum and the pressure evolution of the frequencies at ~1.
View Article and Find Full Text PDFTitanium nitride (TiN) is a candidate material for several plasmonic applications, and pulsed laser ablation in liquids (PLAL) represents a rapid, scalable, and environmentally friendly approach for the large-scale production of nanomaterials with customized properties. In this work, the nanosecond PLAL process is developed, and we provide a concise understanding of the process parameters, such as the solvent and the laser fluence and pulse wavelength, to the size and structure of the produced TiN nanoparticles (NPs). TiN films of a 0.
View Article and Find Full Text PDFThe high pressure response of type-I collagen from bovine Achilles tendon is investigated with micro-Raman spectroscopy. Fluorinert™ and methanol-ethanol mixtures were used as pressure transmitting media (PTM) in a diamond anvil cell. The Raman spectrum of collagen is dominated by three bands centred at approximately 1450, 1660 and 2930 cm , attributed to C-H deformation, C=O stretching of the peptide bond (amide-I band) and C-H stretching modes respectively.
View Article and Find Full Text PDFThere is a growing field of research on the physicochemical properties of bimetallic nanoparticles (BMNPs) and their potential use in different applications. Meanwhile, their antimicrobial activity is scarcely reported, although BMNPs can potentially achieve unique chemical transformations and synergetic effects can be presented. Towards this direction a reproducible simple hybrid polyol process under moderate temperature solvothermal conditions has been applied for the isolation of non-oxide contaminated bimetallic CuFe nanoparticles (NPs).
View Article and Find Full Text PDF